Methods for Functional Analysis of Stem Cells

  • Michelle Escobedo-Cousin
  • J. Alejandro Madrigal
  • Aurore Saudemont
Part of the Methods in Molecular Biology book series (MIMB, volume 1109)


Hematopoietic stem cells (HSC) are rare, multipotent cells characterized by their ability to self-renew and to generate all blood cells throughout life. Major advances have been made in the area of HSC research as a result of the development of different techniques that allowed HSC identification, purification, and analysis of biological functions. This chapter presents methods that are currently used to analyze HSC functions in vitro based on their characteristics.

Key words

Hematopoietic stem cells Self-renewal Differentiation Reconstitution In vitro assays 



Research in the laboratory is funded by Anthony Nolan. M. Escobedo-Cousin is the recipient of a CONACyT and SEP fellowship.


  1. 1.
    Till J, McCulloch EA (1961) A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 14:213–222PubMedCrossRefGoogle Scholar
  2. 2.
    Lemischka I, Raulet D, Mulligan R (1986) Developmental potential and dynamic behavior of hematopoietic stem cells. Cell 45:917–927PubMedCrossRefGoogle Scholar
  3. 3.
    Wu A, Siminovitch L, Till J et al (1968) Evidence for a relationship between mouse hemopoietic stem cells and cells forming colonies in culture. Proc Natl Acad Sci USA 59:1209–1215PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Weissman I (2000) Stem cells: units of development, units of regeneration, and units in evolution. Cell 100:157–168PubMedCrossRefGoogle Scholar
  5. 5.
    Schofield R (1978) The relationship between the spleen colony-forming cell and the haemopoietic stem cell. Blood Cells 4:7–25PubMedGoogle Scholar
  6. 6.
    Wright D, Wagers A, Gulati A et al (2001) Physiological migration of hematopoietic stem and progenitor cells. Science 294:1933–1936PubMedCrossRefGoogle Scholar
  7. 7.
    Massberg S, Schaerli P, Knezevic-Maramica I et al (2007) Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 131:994–1008PubMedCentralPubMedCrossRefGoogle Scholar
  8. 8.
    Manz M, Miyamoto T, Akashi K (2002) Prospective isolation of human clonogenic common myeloid progenitors. Proc Natl Acad Sci USA 99:11872–11877PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Kondo M, Weissman I, Akashi K (1997) Identification of clonogenic common lymphoid progenitors in mouse bone marrow. Cell 91:661–672PubMedCrossRefGoogle Scholar
  10. 10.
    Akashi K, Traver D, Miyamoto T et al (2000) A clonogenic common myeloid progenitor that gives rise to all myeloid lineages. Nature 404:193–197PubMedCrossRefGoogle Scholar
  11. 11.
    Arinobu Y, Mizuno S, Chong Y et al (2007) Reciprocal activation of GATA-1 and PU.1 marks initial specification of hematopoietic stem cells into myeloerythroid and myelolymphoid lineages. Cell Stem Cell 1:416–427PubMedCrossRefGoogle Scholar
  12. 12.
    Grzywacz B, Kataria N, Kataria N et al (2011) Natural killer-cell differentiation by myeloid progenitors. Blood 117:3548–3558PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Pinho M, Marques C, Carvalho F et al (2012) Genetic regulation on ex vivo differentiated natural killer cells from human umbilical cord blood CD34+ cells. J Recept Signal Tranduct Res 32:238–249CrossRefGoogle Scholar
  14. 14.
    Perez S, Sotiropoulou P, Gkika D et al (2003) A novel myeloid-like NK cell progenitor in human umbilical cord blood. Blood 101:3444–3450PubMedCrossRefGoogle Scholar
  15. 15.
    Glimm H, Eisterer W, Lee K et al (2001) Previously undetected human hematopoietic cell populations with short-term repopulating activity selectively engraft NOD/SCID-beta2 microglobulin-null mice. J Clin Invest 107:199–206PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Spangrude G, Brooks D, Tumas D (1995) Long-term repopulation of irradiated mice with limiting numbers of purified hematopoietic stem cells: in vivo expansion of stem cell phenotype but not function. Blood 85:1006–1016PubMedGoogle Scholar
  17. 17.
    Jordan C, Lemischka I (1990) Clonal and systemic analysis of long-term hematopoiesis in the mouse. Genes Dev 4:220–232PubMedCrossRefGoogle Scholar
  18. 18.
    Keller G, Snodgrass R (1990) Life span of multipotential hematopoietic stem cells in vivo. J Exp Med 171:1407–1418PubMedCrossRefGoogle Scholar
  19. 19.
    Iscove N, Nawa K (1997) Hematopoietic stem cells expand during serial transplantation in vivo without apparent exhaustion. Curr Biol 7:805–808PubMedCrossRefGoogle Scholar
  20. 20.
    Morrison S, Weissman I (1994) The long-term repopulating subset of hematopoietic stem cells is deterministic and isolatable by phenotype. Immunity 1:661–673PubMedCrossRefGoogle Scholar
  21. 21.
    Ratajczak M (2008) Phenotypic and functional characterization of hematopoietic stem cells. Curr Opin Hematol 15:293–300PubMedCrossRefGoogle Scholar
  22. 22.
    Bryder D, Rossi D, Weissman I (2006) Hematopoietic stem cells: the paradigmatic tissue-specific stem cell. Am J Pathol 169:338–346PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Ikuta K, Weissman I (1992) Evidence that hematopoietic stem cells express mouse c-kit but do not depend on steel factor for their generation. Proc Natl Acad Sci USA 89:1502–1506PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Spangrude G, Heimfeld S, Weissman I (1988) Purification and characterization of mouse hematopoietic stem cells. Science 241:58–62PubMedCrossRefGoogle Scholar
  25. 25.
    Osawa M, Hanada K, Hamada H et al (1996) Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 273:242–245PubMedCrossRefGoogle Scholar
  26. 26.
    Kiel M, Yielmaz Y, Iwashita T et al (2005) SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell 121:1109–1121PubMedCrossRefGoogle Scholar
  27. 27.
    Larochelle A, Savona M, Wiggins M (2011) Human and rhesus macaque hematopoietic stem cells cannot be purified based only on SLAM family markers. Blood 117:1550–1554PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Civin C, Strauss L, Brovall C et al (1984) Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 133:157–165PubMedGoogle Scholar
  29. 29.
    Baum C, Weissman I, Tsukamoto A et al (1992) Isolation of a candidate human hematopoietic stem-cell population. Proc Natl Acad Sci USA 89:2804–2808PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Murray L, Chen B, Galy A et al (1995) Enrichment of human hematopoietic stem cell activity in the CD34+Thy-1+Lin- subpopulation from mobilized peripheral blood. Blood 85:368–378PubMedGoogle Scholar
  31. 31.
    Bhatia M, Wang J, Kapp U et al (1997) Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 94:5320–5325PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Conneally E, Cashman J, Petzer A et al (1997) Expansion in vitro of transplantable human cord blood stem cells demonstrated using a quantitative assay of their lympho-myeloid repopulating activity in nonobese diabetic-scid/scid mice. Proc Natl Acad Sci USA 94:9836–9841PubMedCentralPubMedCrossRefGoogle Scholar
  33. 33.
    Lansdorp P, Sutherland H, Eaves C (1990) Selective expression of CD45 isoforms on functional subpopulations of CD34+ hemopoietic cells from human bone marrow. J Exp Med 172:363–366PubMedCrossRefGoogle Scholar
  34. 34.
    Benveniste P, Frelin C, Janmohamed S et al (2010) Intermediate-term hematopoietic stem cells with extended but time-limited reconstitution potential. Cell Stem Cell 6:48–58PubMedCrossRefGoogle Scholar
  35. 35.
    Notta F, Doulatov S, Laurenti E et al (2011) Isolation of single human hematopoietic stem cells capable of long-term multilineage engraftment. Science 333:218–221PubMedCrossRefGoogle Scholar
  36. 36.
    Moore M, Williams N, Metcalf D (1973) In vitro colony formation by normal and leukemic human hematopoietic cells: characterization of the colony-forming cells. J Natl Cancer Inst 50:603–623PubMedGoogle Scholar
  37. 37.
    Pike B, William R (1970) Human bone marrow colony growth in agar-gel. J Cell Physiol 76:77–84PubMedCrossRefGoogle Scholar
  38. 38.
    Gartner S, Kaplan H (1980) Long-term culture of human bone marrow cells. Proc Natl Acad Sci USA 77:4756–4759PubMedCentralPubMedCrossRefGoogle Scholar
  39. 39.
    Sutherland H, Eaves C, Eaves A et al (1989) Characterization and partial purification of human marrow cells capable of initiating long-term hematopoiesis in vitro. Blood 74:1563–1570PubMedGoogle Scholar
  40. 40.
    Sutherland H, Eaves C, Lansdorp P et al (1991) Differential regulation of primitive human hematopoietic cells in long-term cultures maintained on genetically engineered murine stromal cells. Blood 78:666–672PubMedGoogle Scholar
  41. 41.
    Hao Q, Thiemann F, Petersen D et al (1996) Extended long-term culture reveals a highly quiescent and primitive human hematopoietic progenitor population. Blood 88:3306–3316PubMedGoogle Scholar
  42. 42.
    Doulatov S, Notta F, Laurenti E et al (2012) Hematopoiesis: a human perspective. Cell Stem Cell 10:120–136PubMedCrossRefGoogle Scholar
  43. 43.
    Shultz L, Brehm M, Garcia-Martinez J et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798PubMedCentralPubMedCrossRefGoogle Scholar
  44. 44.
    Keeney M, Chin-Yee I, Weir K et al (1998) Single platform flow cytometric absolute CD34+ cell counts based on the ISHAGE guidelines. International Society of Hematotherapy and Graft Engineering. Cytometry 34:61–70PubMedCrossRefGoogle Scholar
  45. 45.
    Collins L, Dorshkind K (1987) A stromal cell line from myeloid long-term bone marrow cultures can support myelopoiesis and B lymphopoiesis. J Immunol 138:1082–1087PubMedGoogle Scholar
  46. 46.
    Itoh K, Tezuka H, Sakoda H et al (1989) Reproducible establishment of hemopoietic supportive stromal cell lines from murine bone marrow. Exp Hematol 1989(17):145–153Google Scholar
  47. 47.
    La Motte-Mohs R, Herer E, Zúñiga-Pflücker J (2004) Induction of T-cell development from human cord blood hematopoietic stem cells by Delta-like 1 in vitro. Blood 105:1431–1439PubMedCrossRefGoogle Scholar
  48. 48.
    Grzywacz B, Kataria N, Sikora M et al (2006) Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 108:3824–3833PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Michelle Escobedo-Cousin
    • 1
  • J. Alejandro Madrigal
    • 1
  • Aurore Saudemont
    • 1
  1. 1.Anthony Nolan Research InstituteUniversity College LondonLondonUK

Personalised recommendations