Isolation and Characterization of Mesenchymal Stem Cells

  • Sedat Odabas
  • A. Eser Elçin
  • Y. Murat Elçin
Part of the Methods in Molecular Biology book series (MIMB, volume 1109)


Mesenchymal stem cells (MSCs) have drawn great interest in the field of regenerative medicine, for cell replacement, immunomodulatory, and gene therapies. It has been shown that these multipotent stromal cells can be isolated from tissues such as bone marrow, adipose tissue, trimester amniotic tissue, umbilical cord blood, and deciduous teeth and can be expanded in adherent culture. They have the capacity to differentiate into cells of the connective tissue lineages in vitro and contribute to tissue parenchyma in vivo. However, proper in vitro manipulation of MSCs is a key issue to reveal a potential therapeutic benefit following transplantation into the patients. This chapter summarizes some of the essential protocols and assays used at our laboratory for the isolation, culture, differentiation, and characterization of mesenchymal stem cells from the bone marrow and adipose tissue.

Key words

Mesenchymal stem cells Bone marrow Adipose Isolation Culture Differentiation Gene expression Microarray 



YME acknowledges the support of The Turkish Academy of Sciences (TÜBA), Ankara.


  1. 1.
    Friedenstein AJ, Chailakhjan RK, Lalykina KS (1970) The development of fibroblast colonies in monolayer cultures of guinea-pig bone marrow and spleen cells. Cell Tissue Kinet 3: 393–400PubMedGoogle Scholar
  2. 2.
    Pittenger MF, Mackay MA, Beck SC et al (1999) Multilineage potential of adult human mesenchymal stem cells. Science 284:143–147PubMedCrossRefGoogle Scholar
  3. 3.
    Jiang Y, Jahagirdar BN, Reinhardt RL et al (2002) Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418:41–49PubMedCrossRefGoogle Scholar
  4. 4.
    Lennon DP, Haynesworth SE, Young RG et al (1995) A chemically defined medium supports in vitro proliferation and maintains the osteochondral potential of rat marrow-derived mesenchymal stem cells. Exp Cell Res 219:211–222PubMedCrossRefGoogle Scholar
  5. 5.
    Gussoni E, Soneoka Y, Strickland CD et al (1999) Dystrophin expression in the mdx mouse restored by stem cell transplantation. Nature 401:390–394PubMedGoogle Scholar
  6. 6.
    Quarto R, Mastrogiacomo M, Cancedda R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. N Engl J Med 344:385–386PubMedCrossRefGoogle Scholar
  7. 7.
    Minguell JJ, Erices A, Conget P (2001) Mesenchymal stem cells. Exp Biol Med 226: 507–520Google Scholar
  8. 8.
    Baksh D, Song L, Tuan RS (2004) Adult mesenchymal stem cells: characterization, differentiation, and application in cell and gene therapy. J Cell Mol Med 8:301–316PubMedCrossRefGoogle Scholar
  9. 9.
    Götherström C (2007) Immunomodulation by multipotent mesenchymal stromal cells. Transplantation 84:35–37CrossRefGoogle Scholar
  10. 10.
    Jones EA, Kinsey SE, English A et al (2002) Isolation and characterization of bone marrow multipotential mesenchymal progenitor cells. Arthritis Rheum 46:3349–3360PubMedCrossRefGoogle Scholar
  11. 11.
    Celebi B, Elcin YM (2009) Proteome analysis of rat bone marrow mesenchymal stem cell subcultures. J Proteome Res 8:2164–2172PubMedCrossRefGoogle Scholar
  12. 12.
    Dicker A, Le Blanc K, Astrom G et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290PubMedCrossRefGoogle Scholar
  13. 13.
    Jankowski RJ, Deasy BM, Huard J (2002) Muscle-derived stem cells. Gene Ther 9: 642–647PubMedCrossRefGoogle Scholar
  14. 14.
    De Bari C, Dell’Accio F, Vandenabeele F et al (2003) Skeletal muscle repair by adult human mesenchymal stem cells from synovial membrane. J Cell Biol 160:909–918PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Wickham MQ, Erickson GR, Gimble JM et al (2003) Multipotent stromal cells derived from the infrapatellar fat pad of the knee. Clin Orthop 412:196–212PubMedCrossRefGoogle Scholar
  16. 16.
    Lee OK, Kuo TK, Chen WM et al (2004) Isolation of multipotent mesenchymal stem cells from umbilical cord blood. Blood 103: 1669–1675PubMedCrossRefGoogle Scholar
  17. 17.
    In’t Anker PS, Scherjon SA, van der Keur CK et al (2004) Isolation of mesenchymal stem cells of fetal or maternal origin from human placenta. Stem Cells 22:1338–1345CrossRefGoogle Scholar
  18. 18.
    Miura M, Gronthos S, Zhao M et al (2003) SHED: stem cells from human exfoliated deciduous teeth. Proc Natl Acad Sci U S A 100:5807–5812PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Tsai MS, Lee JL, Chang YJ, Hwang SM (2004) Isolation of human multipotent mesenchymal stem cells from second-trimester amniotic fluid using a novel two-stage culture protocol. Hum Reprod 19:1450–1456PubMedCrossRefGoogle Scholar
  20. 20.
    Dominici M, Le Blanc K, Mueller I et al (2006) Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 8:315–317PubMedCrossRefGoogle Scholar
  21. 21.
    Prockop DJ (1997) Marrow stromal cells as stem cells for nonhematopoietic tissues. Science 276:71–74PubMedCrossRefGoogle Scholar
  22. 22.
    Kolf CM, Cho E, Tuan RS (2007) Mesenchymal stromal cells. Biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 9: 204–213PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Barry FP, Murphy JM (2004) Mesenchymal stem cells: clinical applications and biological characterization. Int J Biochem Cell Biol 36: 568–584PubMedCrossRefGoogle Scholar
  24. 24.
    Bruder SP, Jaiswal N, Haynesworth SE (1997) Growth kinetics, self-renewal, and the osteogenic potential of purified human mesenchymal stem cells during extensive subcultivation and following cryopreservation. J Cell Biochem 64:278–294PubMedCrossRefGoogle Scholar
  25. 25.
    Jaiswal N, Haynesworth SE, Caplan AI, Bruder SP (1997) Osteogenic differentiation of purified culture-expanded human mesenchymal stem cells in vitro. J Cell Biochem 64: 295–312PubMedCrossRefGoogle Scholar
  26. 26.
    Koc A, Emin N, Elcin AE, Elcin YM (2008) In vitro osteogenic differentiation of rat mesenchymal stem cells in a microgravity bioreactor. J Bioact Compat Polym 23:244–261CrossRefGoogle Scholar
  27. 27.
    Nakahara H, Bruder SP, Haynesworth SE et al (1990) Bone and cartilage formation in diffusion chambers by subcultured cells derived from the periosteum. Bone 11:181–188PubMedCrossRefGoogle Scholar
  28. 28.
    Majumdar MK, Thiede MA, Mosca JD et al (1998) Phenotypic and functional comparison of cultures of marrow derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 176:57–66PubMedCrossRefGoogle Scholar
  29. 29.
    Majumdar MK, Keane-Moore M, Buyaner D et al (2003) Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 10:228–241PubMedCrossRefGoogle Scholar
  30. 30.
    Grayson WL, Zhao F, Bunnell B, Ma T (2007) Hypoxia enhances proliferation and tissue formation of human mesenchymal stem cells. Biochem Biophys Res Commun 358:948–953PubMedCrossRefGoogle Scholar
  31. 31.
    Rosova I, Dao M, Capoccia B et al (2008) Hypoxic preconditioning results in increased motility and improved therapeutic potential of human mesenchymal stem cells. Stem Cells 26:2173–2182PubMedCentralPubMedCrossRefGoogle Scholar
  32. 32.
    Inanc B, Elcin AE, Koc A et al (2007) Encapsulation and osteoinduction of human periodontal ligament fibroblasts in chitosan-hydroxyapatite microspheres. J Biomed Mater Res A 82:917–926PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Sedat Odabas
    • 1
  • A. Eser Elçin
    • 1
  • Y. Murat Elçin
    • 1
  1. 1.Faculty of Sciences and Stem Cell InstituteAnkara UniversityAnkaraTurkey

Personalised recommendations