Skip to main content

Post-transplant Monitoring of Chimerism by Lineage-Specific Analysis

  • Protocol
  • First Online:
Bone Marrow and Stem Cell Transplantation

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1109))

Abstract

Molecular surveillance of hematopoietic chimerism is an important part of the routine diagnostic program in patients after allogeneic stem cell transplantation. Chimerism testing permits early prediction and documentation of successful engraftment and facilitates early risk assessment of impending graft rejection. In patients transplanted for treatment of malignant hematologic disorders, monitoring of chimerism can provide an early indication of incipient disease relapse. The investigation of chimerism has therefore become an indispensable tool for the management of patients during the post-transplant period. Increasing use of reduced-intensity conditioning, which is associated with prolonged duration of mixed hematopoietic chimerism, has further increased the clinical importance of chimerism analysis. At present, the most commonly used technical approach to the investigation of chimerism is microsatellite analysis by polymerase chain reaction. The investigation of chimerism within specific leukocyte subsets isolated from peripheral blood or bone marrow samples by flow sorting- or magnetic bead-based techniques provides more specific information on processes underlying the dynamics of donor/recipient chimerism. Moreover, cell subset-specific analysis permits the assessment of impending complications at a significantly higher sensitivity, thus providing a basis for earlier treatment decisions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dubovsky J, Daxberger H, Fritsch G, Printz D, Peters C, Matthes S et al (1999) Kinetics of chimerism during the early post-transplant period in pediatric patients with malignant and non-malignant hematologic disorders: implications for timely detection of engraftment, graft failure and rejection. Leukemia 13:2060–2069

    Article  CAS  Google Scholar 

  2. Pérez-Simón JA, Caballero D, Lopez-Pérez R, Mateos G, Canizo C, Vazquez L et al (2002) Chimerism and minimal residual disease monitoring after reduced intensity conditioning (RIC) allogeneic transplantation. Leukemia 16:1423–1431

    Article  PubMed  Google Scholar 

  3. Matthes-Martin S, Lion T, Haas OA, Frommlet F, Daxberger H, Konig M et al (2003) Lineage-specific chimaerism after stem cell transplantation in children following reduced intensity conditioning: potential predictive value of NK-cell chimaerism for late graft rejection. Leukemia 17:1934–1942

    Article  CAS  PubMed  Google Scholar 

  4. Lion T, Daxberger H, Dubovsky J, Filipcik P, Fritsch G, Printz D et al (2001) Analysis of chimerism within specific leukocyte subsets for detection of residual or recurrent leukemia in pediatric patients after allogeneic stem cell transplantation. Leukemia 15:307–310

    Article  CAS  PubMed  Google Scholar 

  5. Liesveld JL, Rothberg PG (2008) Mixed chimerism in SCT: conflict or peaceful coexistence? Bone Marrow Transplant 42:297–310

    Article  CAS  PubMed  Google Scholar 

  6. Lawler M, McCann SR, Marsh JC, Ljungman P, Hows J, Vandenberghe E, Severe Aplastic Anaemia Working Party of the European Blood and Marrow Transplant Group et al (2009) Serial chimerism analyses indicate that mixed haemopoietic chimerism influences the probability of graft rejection and disease recurrence following allogeneic stem cell transplantation (SCT) for severe aplastic anaemia (SAA): indication for routine assessment of chimerism post SCT for SAA. Br J Haematol 144:933–945

    Article  CAS  PubMed  Google Scholar 

  7. Breuer S, Preuner S, Fritsch G, Daxberger H, Koenig M, Poetschger U et al (2012) Early recipient chimerism testing in the T- and NK-cell lineages for risk assessment of graft rejection in pediatric patients undergoing allogeneic stem cell transplantation. Leukemia 26:509–519

    Article  CAS  PubMed  Google Scholar 

  8. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Handgretinger R, Lang P et al (2004) Increasing mixed chimerism is an important prognostic factor for unfavorable outcome in children with acute lymphoblastic leukemia after allogeneic stem-cell transplantation: possible role for pre-emptive immunotherapy? J Clin Oncol 22:1696–1705

    Article  PubMed  Google Scholar 

  9. Bader P, Kreyenberg H, Hoelle W, Dueckers G, Kremens B, Dilloo D et al (2004) Increasing mixed chimerism defines a high-risk group of childhood acute myelogenous leukemia patients after allogeneic stem cell transplantation where pre-emptive immunotherapy may be effective. Bone Marrow Transplant 33:815–821

    Article  CAS  PubMed  Google Scholar 

  10. Chalandon Y, Vischer S, Helg C, Chapuis B, Roosnek E (2003) Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Geneva experience. Leukemia 17:228–231

    Article  CAS  PubMed  Google Scholar 

  11. Schraml E, Daxberger H, Watzinger F, Lion T (2003) Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Vienna experience. Leukemia 17:224–227

    Article  CAS  PubMed  Google Scholar 

  12. Kreyenberg H, Holle W, Mohrle S, Niethammer D, Bader P (2003) Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Tuebingen experience. Leukemia 17:237–240

    Article  CAS  PubMed  Google Scholar 

  13. Acquaviva C, Duval M, Mirebeau D, Bertin R, Cave H (2003) Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Paris-Robert Debre experience. Leukemia 17:241–246

    Article  CAS  PubMed  Google Scholar 

  14. Hancock JP, Goulden NJ, Oakhill A, Steward CG (2003) Quantitative analysis of chimerism after allogeneic bone marrow transplantation using immunomagnetic selection and fluorescent microsatellite PCR. Leukemia 17:247–251

    Article  CAS  PubMed  Google Scholar 

  15. Koehl U, Beck O, Esser R, Seifried E, Klingebiel T, Schwabe D, Seidl C (2003) Quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection: the Frankfurt experience. Leukemia 17:232–236

    Article  CAS  PubMed  Google Scholar 

  16. Maas F, Schaap N, Kolen S, Zoetbrood A, Buno I, Dolstra H et al (2003) Quantification of donor and recipient hemopoietic cells by real-time PCR of single nucleotide polymorphisms. Leukemia 17:621–629

    Article  CAS  PubMed  Google Scholar 

  17. Fredriksson M, Barbany G, Liljedahl U, Hermanson M, Kataja M, Syvänen AC (2004) Assessing hematopoietic chimerism after allogeneic stem cell transplantation by multiplexed SNP genotyping using microarrays and quantitative analysis of SNP alleles. Leukemia 18:255–266

    Article  CAS  PubMed  Google Scholar 

  18. Jimenez-Velasco A, Barrios M, Roman-Gomez J, Navarro G, Buno I, Castillejo JA et al (2005) Reliable quantification of hematopoietic chimerism after allogeneic transplantation for acute leukemia using amplification by real-time PCR of null alleles and insertion/deletion polymorphisms. Leukemia 19:336–343

    Article  CAS  PubMed  Google Scholar 

  19. Najfeld V, Burnett W, Vlachos A, Scigliano E, Isola L, Fruchtman S (1997) Interphase FISH analysis of sex-mismatched BMT utilizing dual color XY probes. Bone Marrow Transplant 19:829–834

    Article  CAS  PubMed  Google Scholar 

  20. Lion T (2003) Summary: reports on quantitative analysis of chimerism after allogeneic stem cell transplantation by PCR amplification of microsatellite markers and capillary electrophoresis with fluorescence detection. Leukemia 17:252–254

    Article  CAS  PubMed  Google Scholar 

  21. Watzinger F, Lion T, Steward C (2006) The RSD code: proposal for a nomenclature of allelic configurations in SRT-PCR-based chimerism testing after allogeneic stem cell transplantation. Leukemia 20:1448–1452

    Article  CAS  PubMed  Google Scholar 

  22. Thiede C, Bornhäuser U, Brendel C, Leo R, Daxberger H, Mohr B et al (2001) Sequential monitoring of chimerism and detection of minimal residual disease after allogeneic blood stem transplantation (BSCT) using multiplex PCR amplification of short tandem repeat-markers. Leukemia 15:293–302

    Article  CAS  PubMed  Google Scholar 

  23. Lion T, Watzinger F, Preuner S, Kreyenberg H, Tilanus M, de Weger R et al (2012) The EuroChimerism concept for a standardized approach to chimerism analysis after allogeneic stem cell transplantation. Leukemia 26:1821–1828

    Article  CAS  PubMed  Google Scholar 

  24. Thiede C, Prange-Krex G, Freiberg-Richter J, Bornhauser M, Ehninger G (2000) Buccal swabs but not mouthwash samples can be used to obtain pretransplant DNA fingerprints from recipients of allogeneic bone marrow transplants. Bone Marrow Transplant 25:575–577

    Article  CAS  PubMed  Google Scholar 

  25. Thiede C, Lion T (2001) Quantitative analysis of chimerism after allogeneic stem cell transplantation using multiplex PCR amplification of short tandem repeat markers and fluorescence detection. Leukemia 15:303–306

    Article  Google Scholar 

  26. Moretti TR, Baumstark AL, Defenbaugh DA, Keys KM, Smerick JB, Budowle B (2001) Validation of short tandem repeats (STRs) for forensic usage: performance testing of fluorescent multiplex STR systems and analysis of authentic and simulated forensic samples. J Forensic Sci 46:647–660

    CAS  PubMed  Google Scholar 

  27. Schraml E, Lion T (2003) Interference of dye-associated fluorescence signals with quantitative analysis of chimerism by capillary electrophoresis. Leukemia 17:221–223

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media, New York

About this protocol

Cite this protocol

Preuner, S., Lion, T. (2014). Post-transplant Monitoring of Chimerism by Lineage-Specific Analysis. In: Beksaç, M. (eds) Bone Marrow and Stem Cell Transplantation. Methods in Molecular Biology, vol 1109. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-9437-9_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-9437-9_14

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-9436-2

  • Online ISBN: 978-1-4614-9437-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics