Molecular Methods for Detection of Minimal Residual Disease Following Transplantation in Lymphoid and Plasma Cell Disorders

  • Paolo Corradini
  • Cristiana Carniti
Part of the Methods in Molecular Biology book series (MIMB, volume 1109)


Relapse represents the main cause of treatment failure after stem cell transplantation (SCT). Thus, monitoring of minimal residual disease (MRD) in allografted patients allows an early detection of recurrence and a subsequent intervention prior to clinically detectable relapse. MRD assessment by polymerase chain reaction-based methods is currently part of the routine clinical management of patients with chronic myeloid leukemia after allo-SCT. It is also recognized that it is a useful prognostic tool in several mature lymphoid and plasma cell disorders such as chronic lymphocytic leukemia, follicular lymphoma, mantle cell lymphoma, and multiple myeloma. In some of these entities, clinical trials employing MRD as a decision-making tool are currently ongoing and will define whether sensitive MRD detection allows for earlier therapeutic intervention to improve the outcome of SCT. We here discuss the methods of MRD evaluation in lymphoid and plasma cell disorders following transplantation with the ultimate aim of providing critical information for the setup of molecular approaches to detect MRD.

Key words

Minimal residual disease Stem cell transplantation Polymerase chain reaction Lymphoid malignancies Multiple myeloma 


  1. 1.
    Farina L, Carniti C, Dodero A et al (2009) Qualitative and quantitative polymerase chain reaction monitoring of minimal residual disease in relapsed chronic lymphocytic leukemia: early assessment can predict long-term outcome after reduced intensity allogeneic transplantation. Haematologica 94:654–662PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Corradini P, Ladetto M, Zallio F et al (2004) Long-term follow-up of indolent lymphoma patients treated with high-dose sequential chemotherapy and autografting: evidence that durable molecular and clinical remission frequently can be attained only in follicular subtypes. J Clin Oncol 22:1460–1468PubMedCrossRefGoogle Scholar
  3. 3.
    Corradini P, Tarella C, Olivieri A et al (2002) Reduced-intensity conditioning followed by allografting of hematopoietic cells can produce clinical and molecular remissions in patients with poor-risk hematologic malignancies. Blood 99:75–82PubMedCrossRefGoogle Scholar
  4. 4.
    Corradini P, Cavo M, Lokhorst H et al (2003) Molecular remission after myeloablative allogeneic stem cell transplantation predicts a better relapse-free survival in patients with multiple myeloma. Blood 102:1927–1929PubMedCrossRefGoogle Scholar
  5. 5.
    Román J, Alvarez MA, Torrea A (2000) Molecular basis for therapeutic decisions in chronic myeloid leukemia patients after allogeneic bone marrow transplantation. Haematologica 85:1072–1082PubMedGoogle Scholar
  6. 6.
    Inghirami G, Szabolcs MJ, Yee HT et al (1993) Detection of immunoglobulin gene rearrangement of B cell non-Hodgkin’s lymphomas and leukemias in fresh, unfixed and formalin-fixed, paraffin-embedded tissue by polymerase chain reaction. Lab Invest 68:746–757PubMedGoogle Scholar
  7. 7.
    Hallek M (2009) Review state-of-the-art treatment of chronic lymphocytic leukemia. Hematology (Am Soc Hematol Educ Program) 440–449Google Scholar
  8. 8.
    Hallek M, Cheson BD, Catovsky D et al (2008) Guidelines for the diagnosis and treatment of chronic lymphocytic leukemia: a report from the International Workshop on Chronic Lymphocytic Leukemia updating the National Cancer Institute-Working Group 1996 guidelines. Blood 111:5446–5456PubMedCrossRefPubMedCentralGoogle Scholar
  9. 9.
    Brisco MJ, Tan LW, Orsborn AM (1990) Development of a highly sensitive assay, based on the polymerase chain reaction, for rare B-lymphocyte clones in a polyclonal population. Br J Haematol 75:163–167PubMedCrossRefGoogle Scholar
  10. 10.
    Böttcher S, Ritgen M, Dreger P et al (2011) Allogeneic stem cell transplantation for chronic lymphocytic leukemia: lessons to be learned from minimal residual disease studies. Blood Rev 25:91–96PubMedCrossRefGoogle Scholar
  11. 11.
    Moreno C, Villamor N, Colomer D et al (2006) Clinical significance of minimal residual disease, as assessed by different techniques, after stem cell transplantation for chronic lymphocytic leukemia. Blood 107:4563–4569PubMedCrossRefGoogle Scholar
  12. 12.
    Schmitt C, Grundt A, Buchholtz C et al (2006) One single dose of rituximab added to a standard regimen of CHOP in primary treatment of follicular lymphoma appears to result in a high clearance rate from circulating bcl-2/IgH positive cells: is the end of molecular monitoring near? Leuk Res 30:1563–1568PubMedCrossRefGoogle Scholar
  13. 13.
    Yunis JJ, Oken MM, Kaplan ME et al (1982) Distinctive chromosomal abnormalities in histologic subtypes of non-Hodgkin's lymphoma. N Engl J Med 307:1231–1236PubMedCrossRefGoogle Scholar
  14. 14.
    Tsujimoto Y, Yunis J, Onorato-Showe L et al (1984) Molecular cloning of the chromosomal breakpoint of B-cell lymphomas and leukemias with the t(11;14) chromosome translocation. Science 224:1403–1406PubMedCrossRefGoogle Scholar
  15. 15.
    Siebert R, Matthiesen P, Harder S et al (1998) Application of interphase cytogenetics for the detection of t(11;14)(q13;q32) in mantle cell lymphomas. Ann Oncol 9:519–526PubMedCrossRefGoogle Scholar
  16. 16.
    Kurokawa T, Kinoshita T, Murate T et al (1997) Complementarity determining region-III is a useful molecular marker for the evaluation of minimal residual disease in mantle cell lymphoma. Br J Haematol 98:408–412PubMedCrossRefGoogle Scholar
  17. 17.
    Pott C (2011) Minimal residual disease detection in mantle cell lymphoma: technical aspects and clinical relevance. Semin Hematol 48:172–184PubMedCrossRefGoogle Scholar
  18. 18.
    Tonegawa S (1983) Somatic generation of antibody diversity. Nature 302:575–581PubMedCrossRefGoogle Scholar
  19. 19.
    Deane M, McCarthy KP, Wiedemann LM et al (1991) An improved method for detection of B-lymphoid clonality by polymerase chain reaction. Leukemia 5:726–730PubMedGoogle Scholar
  20. 20.
    Voena C, Ladetto M, Astolfi M et al (1997) A novel nested-PCR strategy for detection of rearranged immunoglobulin heavy chain genes in B-cell tumours. Leukemia 11:1793–1798PubMedCrossRefGoogle Scholar
  21. 21.
    Van Dongen JJ, Langerak AW, Brüggemann M et al (2003) Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene recombinations in suspect lymphoproliferations: report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia 17:2257–2317PubMedCrossRefGoogle Scholar
  22. 22.
    Tsujimoto Y, Finger LR, Yunis J et al (1984) Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science 226:1097–1099PubMedCrossRefGoogle Scholar
  23. 23.
    Cleary ML, Sklar J (1985) Nucleotide sequence of a t(14;18) chromosomal breakpoint in follicular lymphoma and demonstration of a breakpoint-cluster region near a transcriptionally active locus on chromosome 18. Proc Natl Acad Sci USA 82:7439–7443PubMedCrossRefPubMedCentralGoogle Scholar
  24. 24.
    Cleary ML, Galili N, Sklar J (1986) Detection of a second t(14;18) breakpoint cluster region in human follicular lymphomas. J Exp Med 164:315–320PubMedCrossRefGoogle Scholar
  25. 25.
    Ladetto M, De Marco F, Benedetti F et al (2008) Prospective, multicenter randomized GITMO/IIL trial comparing intensive (R-HDS) versus conventional (CHOP-R) chemoimmunotherapy in high-risk follicular lymphoma at diagnosis: the superior disease control of R-HDS does not translate into an overall survival advantage. Blood 111:4004–4013PubMedCrossRefGoogle Scholar
  26. 26.
    Pott C, Hoster E, Delfau-Larue MH et al (2010) Molecular remission is an independent predictor of clinical outcome in patients with mantle cell lymphoma after combined immunochemotherapy: a European MCL intergroup study. Blood 115:3215–3223PubMedCrossRefPubMedCentralGoogle Scholar
  27. 27.
    Putkonen M, Kairisto V, Juvonen V et al (2010) Depth of response assessed by quantitative ASO-PCR predicts the outcome after stem cell transplantation in multiple myeloma. Eur J Haematol 85:416–423PubMedCrossRefGoogle Scholar
  28. 28.
    Van der Velden VHJ, Hochhaus A, Cazzaniga G et al (2003) Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia 17:1013–1034PubMedCrossRefGoogle Scholar
  29. 29.
    Luthra R, McBride JA, Cabanillas F et al (1998) Novel 5′ exonuclease-based real-time PCR assay for the detection of t(14;18)(q32;q21)in patients with follicular lymphoma. Am J Pathol 153:63–68PubMedCrossRefPubMedCentralGoogle Scholar
  30. 30.
    Donovan JW, Ladetto M, Zou G et al (2000) Immunoglobulin heavy-chain consensus probes for real-time PCR quantification of residual disease in acute lymphoblastic leukemia. Blood 95:2651–2658PubMedGoogle Scholar
  31. 31.
    Faham M, Zheng J, Moorhead M et al (2012) Deep-sequencing approach for minimal residual disease detection in acute lymphoblastic leukemia. Blood 120:5173–5180PubMedCrossRefPubMedCentralGoogle Scholar
  32. 32.
    Logan AC, Gao H, Wang C, Sahaf B et al (2011) High-throughput VDJ sequencing for quantification of minimal residual disease in chronic lymphocytic leukemia and immune reconstitution assessment. Proc Natl Acad Sci USA 108:21194–21199PubMedCrossRefPubMedCentralGoogle Scholar
  33. 33.
    Van der Burg M, Kreyenberg H, Willasch A et al (2011) Standardization of DNA isolation from low cell numbers for chimerism analysis by PCR of short tandem repeats. Leukemia 25:1467–1470PubMedCrossRefGoogle Scholar
  34. 34.
    Bustin SA, Benes V, Garson JA et al (2009) The MIQE guidelines: minimum information for publication of quantitative real-time PCR experiments. Clin Chem 55:611–622PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Paolo Corradini
    • 1
  • Cristiana Carniti
    • 2
  1. 1.Division of Hematology, Fondazione IRCCS Istituto Nazionale Tumori MilanoUniversity of MilanoMilanItaly
  2. 2.Division of Hematology, Bone Marrow Transplantation Unit, Fondazione IRCCS Istituto Nazionale Tumori MilanoUniversity of MilanoMilanItaly

Personalised recommendations