Advertisement

Molecular Methods Used for Detection of Minimal Residual Disease Following Hematopoietic Stem Cell Transplantation in Myeloid Disorders

  • Ahmet H. Elmaagacli
Protocol
Part of the Methods in Molecular Biology book series (MIMB, volume 1109)

Abstract

The monitoring of minimal residual disease (MRD) in patients with acute or chronic myeloid disorders is performed routinely after allogeneic or autologous transplantation. The detection of MRD helps to identify patients who are at high risk for leukemic relapse after transplantation. The most commonly used techniques for MRD detection are qualitative and quantitative PCR methods, fluorescence in situ hybridization (FISH), fluorescence-activated cell sorting (FACS), and cytogenetic analysis, which are often performed complementary in order to assess more precisely MRD. Here we describe the most used sensitive real-time RT-PCR methods for chronic and acute myeloid disorders. Besides protocols for real-time RT-PCR and multiplex RT-PCR procedures for the most common fusion-gene transcripts in acute and chronic myeloid disorders, methods for detections of disease-specific genetic mutated alterations, as NPM1 and FLT3 gene length mutations, and aberrantly expressed genes, as WT1 gene transcripts, are described in detail for daily use.

Key words

MRD Transplant Real-time RT-PCR Myeloid disorders Fusion transcripts FLT3 length mutations WT1 

References

  1. 1.
    Elmaagacli AH, Becks HW, Beelen DW et al (1995) Detection of minimal residual disease and persistence of host-type hematopoiesis: a study in 28 patients after sex-mismatched, non T-cell-depleted allogeneic bone marrow transplantation for Philadelphia-chromosome positive chronic myelogenous leukemia. Bone Marrow Transplant 16:823–829PubMedGoogle Scholar
  2. 2.
    Mackinnon S, Barnett L, Heller G, O'Reilly RJ (1994) Minimal residual disease is more common in patients who have mixed T-cell chimerism after bone marrow transplantation for chronic myelogenous leukemia. Blood 83:3409–3416PubMedGoogle Scholar
  3. 3.
    Kolb H, Mittermüller J, Clemm C et al (1990) Donor leukocyte transfusions for treatment of recurrent chronic myelogenous leukemia in marrow transplant patients. Blood 76:2462–2465PubMedGoogle Scholar
  4. 4.
    Elmaagacli AH, Beelen DW, Opalka B, Seeber S, Schaefer UW (1999) The risk of residual molecular and cytogenetic disease in patients with Philadelphia-chromosome positive first chronic phase chronic myelogenous leukemia is reduced after transplantation of allogeneic peripheral blood stem cells compared to bone marrow. Blood 94:384–389PubMedGoogle Scholar
  5. 5.
    Kiyoi H, Naoe T, Yokota S et al (1997) Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia 11:1447–1452PubMedCrossRefGoogle Scholar
  6. 6.
    Gorello P, Cazzaniga G, Alberti F et al (2006) Quantitative assessment of minimal residual disease in acute myeloid leukemia carrying nucleophosmin (NPM1) gene mutations. Leukemia 20:1103–1108PubMedCrossRefGoogle Scholar
  7. 7.
    Marcucci G, Haferlach T, Döhner H (2011) Molecular genetics of adult acute myeloid leukemia: prognostic and therapeutic implications. J Clin Oncol 29:475–486PubMedCrossRefGoogle Scholar
  8. 8.
    Kumar CC (2011) Genetic abnormalities and challenges in the treatment of acute myeloid leukemia. Genes Cancer 2:95–107PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Sanders MA, Valk PJM (2013) The evolving molecular genetic landscape in acute myeloid leukaemia. Curr Opin Hematol 20:79–85PubMedCrossRefGoogle Scholar
  10. 10.
    Elmaagacli AH, Freis A, Hahn M et al (2001) Estimate the relapse stage in chronic myeloid leukaemia patients after allogeneic stem cell transplantation by the amount of BCR-ABL fusion transcripts detected using a new real-time polymerase chain reaction method. Br J Haematol 113:1072–1075PubMedCrossRefGoogle Scholar
  11. 11.
    Reading CL, Estey EH, Huh YO et al (1996) Expression of unusual immunophenotype combinations in acute myelogenous leukemia. Blood 81:3083–3090Google Scholar
  12. 12.
    Macedo A, San Miguel JF, Vidriales MB et al (1996) Phenotypic changes in acute myeloid leukaemia: implications on the detection of minimal residual disease. J Clin Pathol 49:15–18PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bernell P, Arvidsson I, Jacobsson B, Hast R (1996) Fluorescence in situ hybridization in combination with morphology detects minimal residual disease in remission and heralds relapse in acute leukaemia. Br J Haematol 95:666–672PubMedCrossRefGoogle Scholar
  14. 14.
    Weisser M, Haferlach T, Schoch C et al (2003) The use of housekeeping genes for real-time PCR based quantification of fusion gene transcripts in AML. Leukemia 17:2474–2486CrossRefGoogle Scholar
  15. 15.
    Holland PM, Abramson RD, Watson R, Gelfand DH (1991) Detection of specific polymerase chain reaction product utilizing the 5′–3′ exonuclease activity of Thermus aquaticus DNA polymerase. Proc Natl Acad Sci USA 88:7276–7280PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Kwok S, Higuchi R (1989) Avoiding false positives with PCR. Nature 339:237–238PubMedCrossRefGoogle Scholar
  17. 17.
    Burmeister T, Maurer J, Aivado M et al (2000) Quality assurance in RT-PCR-based BCR/ABL diagnostics—results of an interlaboratory test and a standardization approach. Leukemia 14:1850–1856PubMedCrossRefGoogle Scholar
  18. 18.
    Schnittger S, Weiser M, Schoch C et al (2003) New score predicting for prognosis in PML-RARA+, AML1-ETO+, or CBFB-MYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 102:2746–2755PubMedCrossRefGoogle Scholar
  19. 19.
    Krauter J, Wattjes MP, Nagel S et al (1999) Real-time RT-PCR for the detection and quantification of AML1/MTG fusion transcripts in t(8;21)-positive AML patients. Br J Haematol 107:80–85PubMedCrossRefGoogle Scholar
  20. 20.
    Elmaagacli AH, Beelen DW, Kroll M et al (1997) Detection of AML1/ETO fusion transcripts in patients with t(8;21) acute myeloid leukemia after allogeneic bone marrow transplantation or peripheral blood progenitor cell transplantation. Blood 90:3230–3231PubMedGoogle Scholar
  21. 21.
    Guerrasio A, Pilatrino C, De Micheli D et al (2002) Assessment of minimal residual disease (MRD) in CHFbeta/MYH11-positive acute myeloid leukemias by qualitative and quantitative RT-PCR amplification of fusion transcripts. Leukemia 16:1176–1181PubMedCrossRefGoogle Scholar
  22. 22.
    Krauter J, Hoellge W, Wattjes MP et al (2001) Detection and quantification of CBFB/MYH11 fusion transcripts in patients with inv(16)-positive acute myeloblastic leukaemia by real-time RT-PCR. Genes Chromosomes Cancer 30:342–348PubMedCrossRefGoogle Scholar
  23. 23.
    Marcucci G, Caliguri MA, Dohner H et al (2001) Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) AML. Leukemia 15:1072–1080PubMedCrossRefGoogle Scholar
  24. 24.
    Buonamici S, Ottaviani E, Testoni N et al (2002) Real-time quantification of minimal residual disease in inv (16)-positive acute myeloid leukaemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood 99:443–449PubMedCrossRefGoogle Scholar
  25. 25.
    Elmaagacli AH, Beelen DW, Kroll M, Trzensky S, Stein C, Schaefer UW (1998) Detection of CBFB/MYH11 fusion transcripts in patients with inv(16) AML after allogeneic bone marrow or peripheral blood progenitor cell transplantation. Bone Marrow Transplant 21:159–166PubMedCrossRefGoogle Scholar
  26. 26.
    Gallagher RE, Yeap BY, Bi W et al (2003) Quantitative real-time RT-PCR analysis of PML-RARA alpha mRNA in acute promyelocytic leukaemia: Assessment of prognostic significance in adult patients from intergroup protocol 0129. Blood 101:2521–2528PubMedCrossRefGoogle Scholar
  27. 27.
    Ogawa H, Tamaki H, Ikegame K et al (2003) The usefulness of monitoring WT1 gene transcripts for the prediction and management of relapse following allogeneic stem cell transplantation in acute type leukaemia. Blood 101:1698–1704PubMedCrossRefGoogle Scholar
  28. 28.
    Cilloni D, Gottardi E, Fava M et al (2003) Usefulness of quantitative assessment of the WT1 gene transcript as a marker for minimal residual disease detection. Blood 102:773–774PubMedCrossRefGoogle Scholar
  29. 29.
    Elmaagacli AH, Beelen DW, Trenschel R, Schaefer UW (2000) The detection of wt-1 transcripts is not associated with an increased leukemic relapse rate in patients with acute leukemia after allogeneic bone marrow or peripheral blood stem cell transplantation. Bone Marrow Transplant 25:91–96PubMedCrossRefGoogle Scholar
  30. 30.
    Vaughn CP, Elenitoba-Johnson KSJ (2004) High-resolution melting analysis for detection of internal tandem duplications. J Mol Diagn 6:211–216PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Schnittger S, Schoch C, Dugas M et al (2002) Analysis of FLT3 length mutations in 1003 patients with acute myeloid leukemia: correlation to cytogenetics, FAB subtype, and prognosis in the AMLCG study and usefulness as a marker for the detection of minimal residual disease. Blood 100:59–66PubMedCrossRefGoogle Scholar
  32. 32.
    Yokota S, Kiyoi H, Nakao M et al (1997) Internal tandem duplications of the FLT3 gene is preferentially seen in acute myeloid leukemia and myelodysplastic syndrome among various hematological malignancies. A study on a large series of patients and cell lines. Leukemia 11:1605–1609PubMedCrossRefGoogle Scholar
  33. 33.
    Repp R, Borkhardt A, Haupt E et al (1995) Detection of four different 11q23 chromosomal abnormalities by multiplex-PCR and fluorescent-based automatic DNA-fragment analysis. Leukemia 9:210–216PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Ahmet H. Elmaagacli
    • 1
  1. 1.Department of Bone Marrow TransplantationUniversity Hospital of EssenHufelandstrGermany

Personalised recommendations