Reporter Gene Technologies for Imaging Cell Fates in Hematopoiesis

  • Sophie Kusy
  • Christopher H. Contag
Part of the Methods in Molecular Biology book series (MIMB, volume 1109)


Advances in noninvasive imaging technologies that allow for in vivo dynamic monitoring of cells and cellular function in living research subjects have revealed new insights into cell biology in the context of intact organs and their native environment. In the field of hematopoiesis and stem cell research, studies of cell trafficking involved in injury repair and hematopoietic engraftment have made great progress using these new tools. Stem cells present unique challenges for imaging since after transplantation, they proliferate dramatically and differentiate. Therefore, the imaging modality used needs to have a large dynamic range, and the genetic regulatory elements used need to be stably expressed during differentiation. Multiple imaging technologies using different modalities are available, and each varies in sensitivity, ease of data acquisition, signal to noise ratios (SNR), substrate availability, and other parameters that affect utility for monitoring cell fates and function. For a given application, there may be several different approaches that can be used. For mouse models, clinically validated technologies such as magnetic resonance imaging (MRI) and positron emission tomography (PET) have been joined by optical imaging techniques such as in vivo bioluminescence imaging (BLI) and fluorescence imaging (FLI), and all have been used to monitor bone marrow and stem cells after transplantation into mice. Photoacoustic imaging that utilizes the sound created by the thermal expansion of absorbed light to generate an image best represents hybrid technologies. Each modality requires that the cells of interest be marked with a genetic reporter that acts as a label making them uniquely visible using that technology. For each modality, there are several labels to choose from. Multiple methods for applying these different labels are available. This chapter provides an overview of the imaging technologies and commonly used labels for each, as well as detailed protocols for gene delivery into hematopoietic cells for the purposes of applying these specific labels to cell trafficking. The goal of this chapter is to provide adequate background information to allow the design and implementation of an experimental system for in vivo imaging in mice.

Key words

Molecular imaging Hematopoiesis Bioluminescence Reporter genes Transcription Biophotonic imaging 


  1. 1.
    Hardy J, Francis KP, DeBoer M et al (2004) Extracellular replication of Listeria monocytogenes in the murine gall bladder. Science 303:851–853PubMedCrossRefGoogle Scholar
  2. 2.
    Liu H, Patel MR, Prescher JA et al (2010) Cancer stem cells from human breast tumors are involved in spontaneous metastases in orthotopic mouse models. Proc Natl Acad Sci U S A 107:18115–18120PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Cao YA, Wagers AJ, Beilhack A et al (2004) Shifting foci of hematopoiesis during reconstitution from single stem cells. Proc Natl Acad Sci U S A 101:221–226PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Gambhir SS, Yaghoubi SS (2010) Molecular imaging with reporter genes. Cambridge University Press, Cambridge/New York, p xiii, 321CrossRefGoogle Scholar
  5. 5.
    Bennink RJ, Hamann J, de Bruin K et al (2005) Dedicated pinhole SPECT of intestinal neutrophil recruitment in a mouse model of dextran sulfate sodium-induced colitis. J Nucl Med 46: 526–531PubMedGoogle Scholar
  6. 6.
    Bennink RJ, van Montfrans C, de Jonge WJ et al (2004) Imaging of intestinal lymphocyte homing by means of pinhole SPECT in a TNBS colitis mouse model. Nucl Med Biol 31: 93–101PubMedCrossRefGoogle Scholar
  7. 7.
    Jendelova P, Herynek V, Urdzikova L et al (2004) Magnetic resonance tracking of transplanted bone marrow and embryonic stem cells labeled by iron oxide nanoparticles in rat brain and spinal cord. J Neurosci Res 76:232–243PubMedCrossRefGoogle Scholar
  8. 8.
    Paik JY, Lee KH, Byun SS, Choe YS, Kim BT (2002) Use of insulin to improve [18 F]fluorodeoxyglucose labelling and retention for in vivo positron emission tomography imaging of monocyte trafficking. Nucl Med Commun 23: 551–557PubMedCrossRefGoogle Scholar
  9. 9.
    Wang X, Rosol M, Ge S et al (2003) Dynamic tracking of human hematopoietic stem cell engraftment using in vivo bioluminescence imaging. Blood 102:3478–3482PubMedCrossRefGoogle Scholar
  10. 10.
    Bengel FM, Schachinger V, Dimmeler S (2005) Cell-based therapies and imaging in cardiology. Eur J Nucl Med Mol Imaging 32(Suppl 2): S404–S416PubMedCrossRefGoogle Scholar
  11. 11.
    Dick AJ, Guttman MA, Raman VK et al (2003) Magnetic resonance fluoroscopy allows targeted delivery of mesenchymal stem cells to infarct borders in Swine. Circulation 108: 2899–2904PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Li Z, Suzuki Y, Huang M et al (2008) Comparison of reporter gene and iron particle labeling for tracking fate of human embryonic stem cells and differentiated endothelial cells in living subjects. Stem Cells 26:864–873PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Bindslev L, Haack-Sorensen M, Bisgaard K et al (2006) Labelling of human mesenchymal stem cells with indium-111 for SPECT imaging: effect on cell proliferation and differentiation. Eur J Nucl Med Mol Imaging 33: 1171–1177PubMedCrossRefGoogle Scholar
  14. 14.
    Kraitchman DL, Tatsumi M, Gilson WD et al (2005) Dynamic imaging of allogeneic mesenchymal stem cells trafficking to myocardial infarction. Circulation 112:1451–1461PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Zhou R, Thomas DH, Qiao H et al (2005) In vivo detection of stem cells grafted in infarcted rat myocardium. J Nucl Med 46:816–822PubMedCentralPubMedGoogle Scholar
  16. 16.
    Doyle B, Kemp BJ, Chareonthaitawee P et al (2007) Dynamic tracking during intracoronary injection of 18F-FDG-labeled progenitor cell therapy for acute myocardial infarction. J Nucl Med 48:1708–1714PubMedCrossRefGoogle Scholar
  17. 17.
    Bengel FM, Gambhir SS (2005) Clinical molecular imaging and therapy-moving ahead together. Eur J Nucl Med Mol Imaging 32 (Suppl 2):S323PubMedCrossRefGoogle Scholar
  18. 18.
    Troy T, Jekic-McMullen D, Sambucetti L, Rice B (2004) Quantitative comparison of the sensitivity of detection of fluorescent and bioluminescent reporters in animal models. Mol Imaging 3:9–23PubMedCrossRefGoogle Scholar
  19. 19.
    Beeres SL, Bengel FM, Bartunek J et al (2007) Role of imaging in cardiac stem cell therapy. J Am Coll Cardiol 49:1137–1148PubMedCrossRefGoogle Scholar
  20. 20.
    Gildehaus FJ, Haasters F, Drosse I et al (2011) Impact of indium-111 oxine labelling on viability of human mesenchymal stem cells in vitro, and 3D cell-tracking using SPECT/CT in vivo. Mol Imaging Biol 13: 1204–1214PubMedCrossRefGoogle Scholar
  21. 21.
    Kang WJ, Kang HJ, Kim HS et al (2006) Tissue distribution of 18F-FDG-labeled peripheral hematopoietic stem cells after intracoronary administration in patients with myocardial infarction. J Nucl Med 47:1295–1301PubMedGoogle Scholar
  22. 22.
    Olson JA, Zeiser R, Beilhack A, Goldman JJ, Negrin RS (2009) Tissue-specific homing and expansion of donor NK cells in allogeneic bone marrow transplantation. J Immunol 183: 3219–3228PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Sipkins DA, Wei X, Wu JW et al (2005) In vivo imaging of specialized bone marrow endothelial microdomains for tumour engraftment. Nature 435:969–973PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Stoll S, Delon J, Brotz TM, Germain RN (2002) Dynamic imaging of T cell-dendritic cell interactions in lymph nodes. Science 296: 1873–1876PubMedCrossRefGoogle Scholar
  25. 25.
    Reichardt W, Durr C, von Elverfeldt D et al (2008) Impact of mammalian target of rapamycin inhibition on lymphoid homing and tolerogenic function of nanoparticle-labeled dendritic cells following allogeneic hematopoietic cell transplantation. J Immunol 181:4770–4779PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Fujisaki J, Wu J, Carlson AL et al (2011) In vivo imaging of Treg cells providing immune privilege to the haematopoietic stem-cell niche. Nature 474:216–219PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Park D, Spencer JA, Koh BI et al (2012) Endogenous bone marrow MSCs are dynamic, fate-restricted participants in bone maintenance and regeneration. Cell Stem Cell 10: 259–272PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Soloviev VY (2007) Tomographic bioluminescence imaging with varying boundary conditions. Appl Opt 46:2778–2784PubMedCrossRefGoogle Scholar
  29. 29.
    Lv Y, Tian J, Cong W et al (2007) Spectrally resolved bioluminescence tomography with adaptive finite element analysis: methodology and simulation. Phys Med Biol 52:4497–4512PubMedCrossRefGoogle Scholar
  30. 30.
    Montet X, Figueiredo JL, Alencar H et al (2007) Tomographic fluorescence imaging of tumor vascular volume in mice. Radiology 242:751–758PubMedCrossRefGoogle Scholar
  31. 31.
    Montet X, Ntziachristos V, Grimm J, Weissleder R (2005) Tomographic fluorescence mapping of tumor targets. Cancer Res 65: 6330–6336PubMedCrossRefGoogle Scholar
  32. 32.
    Roy R, Thompson AB, Godavarty A, Sevick-Muraca EM (2005) Tomographic fluorescence imaging in tissue phantoms: a novel reconstruction algorithm and imaging geometry. IEEE Trans Med Imaging 24:137–154PubMedCrossRefGoogle Scholar
  33. 33.
    Keren S, Gheysens O, Levin CS, Gambhir SS (2008) A comparison between a time domain and continuous wave small animal optical imaging system. IEEE Trans Med Imaging 27: 58–63PubMedCrossRefGoogle Scholar
  34. 34.
    Kumar AT, Raymond SB, Dunn AK, Bacskai BJ, Boas DA (2008) A time domain fluorescence tomography system for small animal imaging. IEEE Trans Med Imaging 27: 1152–1163PubMedCentralPubMedCrossRefGoogle Scholar
  35. 35.
    Model R, Orlt M, Walzel M, Hunlich R (1998) Optical imaging: three-dimensional approximation and perturbation approaches for time-domain data. Appl Opt 37:7968–7976PubMedCrossRefGoogle Scholar
  36. 36.
    Michalet X, Pinaud FF, Bentolila LA et al (2005) Quantum dots for live cells, in vivo imaging, and diagnostics. Science 307:538–544PubMedCentralPubMedCrossRefGoogle Scholar
  37. 37.
    Kalchenko V, Shivtiel S, Malina V et al (2006) Use of lipophilic near-infrared dye in whole-body optical imaging of hematopoietic cell homing. J Biomed Opt 11:050507PubMedCrossRefGoogle Scholar
  38. 38.
    Gilad AA, Winnard PT Jr, van Zijl PC, Bulte JW (2007) Developing MR reporter genes: promises and pitfalls. NMR Biomed 20: 275–290PubMedCrossRefGoogle Scholar
  39. 39.
    Ponomarev V, Doubrovin M, Shavrin A et al (2007) A human-derived reporter gene for noninvasive imaging in humans: mitochondrial thymidine kinase type 2. J Nucl Med 48: 819–826PubMedCrossRefGoogle Scholar
  40. 40.
    Hsieh CH, Chen FD, Wang HE et al (2008) Generation of destabilized herpes simplex virus type 1 thymidine kinase as transcription reporter for PET reporter systems in molecular genetic imaging. J Nucl Med 49:142–150PubMedCrossRefGoogle Scholar
  41. 41.
    MacLaren DC, Gambhir SS, Satyamurthy N et al (1999) Repetitive, non-invasive imaging of the dopamine D2 receptor as a reporter gene in living animals. Gene Ther 6:785–791PubMedCrossRefGoogle Scholar
  42. 42.
    Chen IY, Wu JC, Min JJ et al (2004) Micro-positron emission tomography imaging of cardiac gene expression in rats using bicistronic adenoviral vector-mediated gene delivery. Circulation 109:1415–1420PubMedCrossRefGoogle Scholar
  43. 43.
    Liang Q, Satyamurthy N, Barrio JR et al (2001) Noninvasive, quantitative imaging in living animals of a mutant dopamine D2 receptor reporter gene in which ligand binding is uncoupled from signal transduction. Gene Ther 8:1490–1498PubMedCrossRefGoogle Scholar
  44. 44.
    Kang JH, Lee DS, Paeng JC et al (2005) Development of a sodium/iodide symporter (NIS)-transgenic mouse for imaging of cardiomyocyte-specific reporter gene expression. J Nucl Med 46:479–483PubMedGoogle Scholar
  45. 45.
    Kim YH, Lee DS, Kang JH et al (2005) Reversing the silencing of reporter sodium/iodide symporter transgene for stem cell tracking. J Nucl Med 46:305–311PubMedGoogle Scholar
  46. 46.
    Miyagawa M, Anton M, Wagner B et al (2005) Non-invasive imaging of cardiac transgene expression with PET: comparison of the human sodium/iodide symporter gene and HSV1-tk as the reporter gene. Eur J Nucl Med Mol Imaging 32:1108–1114PubMedCrossRefGoogle Scholar
  47. 47.
    Terrovitis J, Kwok KF, Lautamaki R et al (2008) Ectopic expression of the sodium-iodide symporter enables imaging of transplanted cardiac stem cells in vivo by single-photon emission computed tomography or positron emission tomography. J Am Coll Cardiol 52:1652–1660PubMedCrossRefGoogle Scholar
  48. 48.
    Penheiter AR, Russell SJ, Carlson SK (2012) The sodium iodide symporter (NIS) as an imaging reporter for gene, viral, and cell-based therapies. Curr Gene Ther 12:33–47PubMedCentralPubMedCrossRefGoogle Scholar
  49. 49.
    Hall MP, Unch J, Binkowski BF et al (2012) Engineered luciferase reporter from a deep sea shrimp utilizing a novel imidazopyrazinone substrate. ACS Chem Biol 7:1848–1857PubMedCentralPubMedCrossRefGoogle Scholar
  50. 50.
    Loening AM, Wu AM, Gambhir SS (2007) Red-shifted Renilla reniformis luciferase variants for imaging in living subjects. Nat Methods 4:641–643PubMedCrossRefGoogle Scholar
  51. 51.
    Tannous BA, Kim DE, Fernandez JL, Weissleder R, Breakefield XO (2005) Codon-optimized Gaussia luciferase cDNA for mammalian gene expression in culture and in vivo. Mol Ther 11:435–443PubMedCrossRefGoogle Scholar
  52. 52.
    Welsh JP, Patel KG, Manthiram K, Swartz JR (2009) Multiply mutated Gaussia luciferases provide prolonged and intense bioluminescence. Biochem Biophys Res Commun 389: 563–568PubMedCrossRefGoogle Scholar
  53. 53.
    Maguire CA, Deliolanis NC, Pike L et al (2009) Gaussia luciferase variant for high-throughput functional screening applications. Anal Chem 81:7102–7106PubMedCentralPubMedCrossRefGoogle Scholar
  54. 54.
    Zhao H, Doyle TC, Coquoz O et al (2005) Emission spectra of bioluminescent reporters and interaction with mammalian tissue determine the sensitivity of detection in vivo. J Biomed Opt 10:41210PubMedCrossRefGoogle Scholar
  55. 55.
    Zhao H, Doyle TC, Wong RJ et al (2004) Characterization of coelenterazine analogs for measurements of Renilla luciferase activity in live cells and living animals. Mol Imaging 3:43–54PubMedCrossRefGoogle Scholar
  56. 56.
    Bhaumik S, Lewis XZ, Gambhir SS (2004) Optical imaging of Renilla luciferase, synthetic Renilla luciferase, and firefly luciferase reporter gene expression in living mice. J Biomed Opt 9:578–586PubMedCrossRefGoogle Scholar
  57. 57.
    Kwon H, Enomoto T, Shimogawara M et al (2010) Bioluminescence imaging of dual gene expression at the single-cell level. Biotechniques 48:460–462PubMedCrossRefGoogle Scholar
  58. 58.
    Mezzanotte L, Que I, Kaijzel E et al (2011) Sensitive dual color in vivo bioluminescence imaging using a new red codon optimized firefly luciferase and a green click beetle luciferase. PLoS One 6:e19277PubMedCentralPubMedCrossRefGoogle Scholar
  59. 59.
    Na IK, Markley JC, Tsai JJ et al (2010) Concurrent visualization of trafficking, expansion, and activation of T lymphocytes and T-cell precursors in vivo. Blood 116:e18–e25PubMedCentralPubMedCrossRefGoogle Scholar
  60. 60.
    Vilalta M, Jorgensen C, Degano IR et al (2009) Dual luciferase labelling for non-invasive bioluminescence imaging of mesenchymal stromal cell chondrogenic differentiation in demineralized bone matrix scaffolds. Biomaterials 30: 4986–4995PubMedCrossRefGoogle Scholar
  61. 61.
    Sheikh AY, Lin SA, Cao F et al (2007) Molecular imaging of bone marrow mononuclear cell homing and engraftment in ischemic myocardium. Stem Cells 25:2677–2684PubMedCentralPubMedCrossRefGoogle Scholar
  62. 62.
    Cao F, Lin S, Xie X et al (2006) In vivo visualization of embryonic stem cell survival, proliferation, and migration after cardiac delivery. Circulation 113:1005–1014PubMedCrossRefGoogle Scholar
  63. 63.
    Li Z, Wu JC, Sheikh AY, Kraft D, Cao F et al (2007) Differentiation, survival, and function of embryonic stem cell derived endothelial cells for ischemic heart disease. Circulation 116: I46–I54PubMedCentralPubMedGoogle Scholar
  64. 64.
    Contag CH (2007) In vivo pathology: seeing with molecular specificity and cellular resolution in the living body. Annu Rev Pathol 2: 277–305PubMedCrossRefGoogle Scholar
  65. 65.
    Massoud TF, Gambhir SS (2003) Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev 17:545–580PubMedCrossRefGoogle Scholar
  66. 66.
    Shah BS, Clark PA, Moioli EK, Stroscio MA, Mao JJ (2007) Labeling of mesenchymal stem cells by bioconjugated quantum dots. Nano Lett 7:3071–3079PubMedCrossRefGoogle Scholar
  67. 67.
    Shaner NC, Steinbach PA, Tsien RY (2005) A guide to choosing fluorescent proteins. Nat Methods 2:905–909PubMedCrossRefGoogle Scholar
  68. 68.
    Slotkin JR, Chakrabarti L, Dai HN et al (2007) In vivo quantum dot labeling of mammalian stem and progenitor cells. Dev Dyn 236: 3393–3401PubMedCentralPubMedCrossRefGoogle Scholar
  69. 69.
    Kesarwala AH, Prior JL, Sun J et al (2006) Second-generation triple reporter for bioluminescence, micro-positron emission tomography, and fluorescence imaging. Mol Imaging 5:465–474PubMedGoogle Scholar
  70. 70.
    Ray P, Tsien R, Gambhir SS (2007) Construction and validation of improved triple fusion reporter gene vectors for molecular imaging of living subjects. Cancer Res 67: 3085–3093PubMedCrossRefGoogle Scholar
  71. 71.
    Cao F, Drukker M, Lin S et al (2007) Molecular imaging of embryonic stem cell misbehavior and suicide gene ablation. Cloning Stem Cells 9:107–117PubMedCrossRefGoogle Scholar
  72. 72.
    Cai X, Li L, Krumholz A, Guo Z, Erpelding TN et al (2012) Multi-scale molecular photoacoustic tomography of gene expression. PLoS One 7:e43999PubMedCentralPubMedCrossRefGoogle Scholar
  73. 73.
    Li L, Zemp RJ, Lungu G, Stoica G, Wang LV (2007) Photoacoustic imaging of lacZ gene expression in vivo. J Biomed Opt 12:020504PubMedCrossRefGoogle Scholar
  74. 74.
    Ichim CV, Wells RA (2011) Generation of high-titer viral preparations by concentration using successive rounds of ultracentrifugation. J Transl Med 9:137PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, New York 2014

Authors and Affiliations

  • Sophie Kusy
    • 1
  • Christopher H. Contag
    • 1
  1. 1.Department of PediatricsStanford University School of MedicineStanfordUSA

Personalised recommendations