Skip to main content

Protein Identification by Mass Spectrometry: Proteomics

  • Protocol
  • First Online:
Current Laboratory Methods in Neuroscience Research

Part of the book series: Springer Protocols Handbooks ((SPH))

  • 5298 Accesses

Abstract

Identification, characterization, and quantitation of changes of proteins induced by various types of external and/or internal stimuli are the major objectives of proteomics. Because proteins consist of 20 amino acids, their sequencing is more complicated than nucleic acids, which are a combination of four nucleotides. Proteins and peptides cannot be amplified and/or hybridized in vitro as nucleic acids. Moreover, proteins may have multiple posttranslationally modified sites and multiple types of modifications, such as phosphorylation, nitration, acetylation, and methylation, just to mention a few. These facts have a decisive impact on analytical methods used for protein sequencing and characterization. Before the development of soft ionization (the formation of ions without breaking any chemical bonds) techniques, proteins and peptides were sequenced using the Edman degradation method, based on the sequential removal of N-terminal amino acids (Edman 1970). This method, although still used (Mari et al. 2010), has many limitations such as an inability to sequence peptides that have the N-terminus blocked (Chen et al. 2008). Fragmentation of relatively short peptides (usually 6–30 amino acids in length) in gas phase in mass spectrometers exponentially increased the confidence with which we are able to determine peptide sequence and reveal other structural features, including posttranslational modifications (Biemann 1988; Strachunskii et al. 1992; Appella et al. 2000; Meng et al. 2005; Paizs and Suhai 2005). A number of specific proteolytic enzymes are available to fragment larger proteins into shorter peptides more suitable for high-quality analysis in tandem mass spectrometry (MS/MS) (see Fig. 28.3). The most commonly used enzyme, trypsin, specifically cleaves the peptide bond C-terminal to arginine and lysine residues with any amino acid excluding proline (Thiede et al. 2005). The Arg/Lys–Pro peptide bond is cleaved at a very low rate; however, if such a peptide is well ionized, it still can be detected and sequenced by mass spectrometry (Pottiez et al. 2010)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmed FE (2008) Utility of mass spectrometry for proteome analysis: part I. Conceptual and experimental approaches. Expert Rev Proteomics 5:841–864

    Article  CAS  PubMed  Google Scholar 

  • Ahmed FE (2009) Sample preparation and fractionation for proteome analysis and cancer biomarker discovery by mass spectrometry. J Sep Sci 32:771–798

    Article  CAS  PubMed  Google Scholar 

  • Appella E, Arnott D, Sakaguchi K, Wirth PJ (2000) Proteome mapping by two-dimensional polyacrylamide gel electrophoresis in combination with mass spectrometric protein sequence analysis. EXS 88:1–27

    CAS  PubMed  Google Scholar 

  • Biemann K (1988) Contributions of mass spectrometry to peptide and protein structure. Biomed Environ Mass Spectrom 16:99–111

    Article  CAS  PubMed  Google Scholar 

  • Bodzon-Kulakowska A, Bierczynska-Krzysik A, Dylag T, Drabik A, Suder P, Noga M, Jarzebinska J, Silberring J (2007) Methods for samples preparation in proteomic research. J Chromatogr B Analyt Technol Biomed Life Sci 849:1–31

    Article  CAS  PubMed  Google Scholar 

  • Canas B, Pineiro C, Calvo E, Lopez-Ferrer D, Gallardo JM (2007) Trends in sample preparation for classical and second generation proteomics. J Chromatogr A 1153:235–258

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Yin X, Yin Y (2008) Rapid and reliable peptide de novo sequencing facilitated by microfluidic chip-based Edman degradation. J Proteome Res 7:766–770

    Article  CAS  PubMed  Google Scholar 

  • Domon B, Aebersold R (2006) Mass spectrometry and protein analysis. Science 312:212–217

    Article  CAS  PubMed  Google Scholar 

  • Edman P (1970) Sequence determination. Mol Biol Biochem Biophys 8:211–255

    CAS  PubMed  Google Scholar 

  • Granvogl B, Ploscher M, Eichacker LA (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389:991–1002

    Article  CAS  PubMed  Google Scholar 

  • Grimm RL, Beauchamp JL (2002) Evaporation and discharge dynamics of highly charged droplets of heptane, octane, and p-xylene generated by electrospray ionization. Anal Chem 74:6291–6297

    Article  CAS  PubMed  Google Scholar 

  • Gundry RL, White MY, Murray CI, Kane LA, Fu Q, Stanley BA, Van Eyk JE (2009) Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol Chapter 10:Unit10.25

    Google Scholar 

  • Li KY, Tu H, Ray AK (2005) Charge limits on droplets during evaporation. Langmuir 21:3786–3794

    Article  CAS  PubMed  Google Scholar 

  • Luque-Garcia JL, Neubert TA (2007) Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry. J Chromatogr A 1153:259–276

    Article  CAS  PubMed  Google Scholar 

  • Mari A, Ciardiello MA, Tamburrini M, Rasi C, Palazzo P (2010) Proteomic analysis in the identification of allergenic molecules. Expert Rev Proteomics 7:723–734

    Article  CAS  PubMed  Google Scholar 

  • McGregor E, De Souza A (2006) Proteomics and laser microdissection. Methods Mol Biol 333:291–304

    CAS  PubMed  Google Scholar 

  • Meng F, Forbes AJ, Miller LM, Kelleher NL (2005) Detection and localization of protein modifications by high resolution tandem mass spectrometry. Mass Spectrom Rev 24:126–134

    Article  CAS  PubMed  Google Scholar 

  • Paizs B, Suhai S (2005) Fragmentation pathways of protonated peptides. Mass Spectrom Rev 24:508–548

    Article  CAS  PubMed  Google Scholar 

  • Pottiez G, Haverland N, Ciborowski P (2010) Mass spectrometric characterization of gelsolin isoforms. Rapid Commun Mass Spectrom 24:2620–2624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roepstorff P (2000) MALDI-TOF mass spectrometry in protein chemistry. EXS 88:81–97

    CAS  PubMed  Google Scholar 

  • Rozek W, Ricardo-Dukelow M, Holloway S, Gendelman HE, Wojna V, Melendez L, Ciborowski P (2007) Cerebrospinal fluid proteomic profiling of HIV-1-infected patients with cognitive impairment. J Proteome Res 6:4189–4199

    Article  CAS  PubMed  Google Scholar 

  • Rozek W, Horning J, Anderson J, Ciborowski P (2008) Sera proteomic biomarker profiling in HIV-1 infected subjects with cognitive impairment. Proteomics Clin Appl 2:1498–1507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Seidler J, Zinn N, Boehm ME, Lehmann WD (2010) De novo sequencing of peptides by MS/MS. Proteomics 10:634–649

    Article  CAS  PubMed  Google Scholar 

  • Silberring J, Ciborowski P (2010) Biomarker discovery and clinical proteomics. Trends Analyt Chem 29:128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strachunskii LS, Prokhorenkov PI, Novikova Iu A, Krechikova OI, Iakusheva LV (1992) [Use of cefoperazone in clinical practice]. Antibiot Khimioter 37:19–21

    CAS  PubMed  Google Scholar 

  • Thiede B, Hohenwarter W, Krah A, Mattow J, Schmid M, Schmidt F, Jungblut PR (2005) Peptide mass fingerprinting. Methods 35:237–247

    Article  CAS  PubMed  Google Scholar 

  • Wilm M (2011) Principles of electrospray ionization. Mol Cell Proteomics 10(M111):009407

    PubMed  Google Scholar 

  • Yates JR 3rd (1998) Mass spectrometry and the age of the proteome. J Mass Spectrom 33:1–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pawel Ciborowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Wojtkiewicz, M., Barnett, K., Ciborowski, P. (2014). Protein Identification by Mass Spectrometry: Proteomics. In: Xiong, H., Gendelman, H.E. (eds) Current Laboratory Methods in Neuroscience Research. Springer Protocols Handbooks. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-8794-4_28

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8794-4_28

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-8793-7

  • Online ISBN: 978-1-4614-8794-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics