Skip to main content

Ecological Methods in Ethnobotanical and Ethnobiological Research: Using Diversity Measurements and Richness Estimators

Part of the Springer Protocols Handbooks book series (SPH)

Abstract

This chapter discusses the application of diversity measures for ethnobiological and ethnobotanical data sets. Diversity measures are based on the assessment of the heterogeneity of information, with two main components: richness and abundance. In ecological studies, this information is usually equivalent to heterogeneity in the distribution of individuals of different species in a given area. In studies in which we are dealing with local knowledge about species—i.e., vernacular names, ethnogenera or ethnospecies—information often corresponds to the quotations from each respondent about the perceived items. In ethnobiological research these analyses allow us to broaden the discussions on the evaluation of sampling effort; on the comparability between data sets obtained from different regions; on the objective analysis of the distribution of knowledge within a given human group; and on the possibility of integration ethnobiological data with ecological and biological information.

Key words

  • Diversity
  • Richness
  • Evenness
  • Rarefaction
  • Sampling effort

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-8636-7_25
  • Chapter length: 16 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-8636-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Given DR, Harris W (1994) Techniques and methods of ethnobotany. The Commonwealth Secretariat Publications, London

    Google Scholar 

  2. Martin GJ (1995) Ethnobotany. Chapman and Hall, London

    CrossRef  Google Scholar 

  3. Alexiades MN (1996) Selected guidelines for ethnobotanical research: a field manual. New York Botanical Garden, New York

    Google Scholar 

  4. Prance GT, Baleé W, Boom BM, Carneiro RL (1987) Quantitative ethnobotany and the case for conservation in Amazonia. Conserv Biol 1:296–310

    CrossRef  Google Scholar 

  5. Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru I: statistical hypothesis testing with a new quantitative technique. Econ Bot 47:15–32

    CrossRef  Google Scholar 

  6. Phillips O, Gentry AH (1993) The useful plants of Tambopata, Peru II: additional hypothesis testing in quantitative ethnobotany. Econ Bot 47:33–43

    CrossRef  Google Scholar 

  7. Begossi A (1996) Use of ecological methods in ethnobotany: diversity indices. Econ Bot 50(3): 280–289

    CrossRef  Google Scholar 

  8. Amorozo MCM (1996) A abordagem etnobotânica na pesquisa de plantas medicinais. In: Di Stasi LC (ed) Plantas medicinais: arte e ciência. Editora da UNESP, São Paulo

    Google Scholar 

  9. Amorozo MCM, Ming LC, Silva SMP (eds) (2002) Métodos de coleta e análise de dados em etnobiologia, etnoecologia e disciplinas correlatas. UNESP/CNPq, Rio Claro

    Google Scholar 

  10. Albuquerque UP, Lucena RFP (eds) (2004) Métodos e técnicas na pesquisa etnobotânica. Editora Livro Rápido/NUPEEA, Recife

    Google Scholar 

  11. Rossato SC, Leitão-Filho HF, Begossi A (1999) Ethnobotany of caiçaras of the Atlantic forest coast (Brazil). Econ Bot 53(3):377–385

    Google Scholar 

  12. Hanazaki N, Tamashiro JY, Leitão-Filho HF, Begossi A (2000) Diversity of plant uses in two Caiçara communities from the Atlantic forest coast, Brazil. Biodivers Conserv 9(5):597–615

    CrossRef  Google Scholar 

  13. Williams VL, Balkwill K, Witkowski ETF (2000) Unraveling the commercial market for medicinal plants and plant parts on the Witwatersrand, South Africa. Econ Bot 54(3):310–327

    CrossRef  Google Scholar 

  14. Hardesty DL (1975) The niche concept: suggestions for its use in human ecology. Hum Ecol 3(2):71–85

    CrossRef  Google Scholar 

  15. Begossi A, Richerson PJ (1993) Biodiversity, family income and ecological niche: a study on the consumption of animal foods on Búzios island (Brazil). Ecol Food Nutr 30:51–61

    CrossRef  Google Scholar 

  16. Hanazaki N, Begossi A (2000) Fishing and niche dimension for food consumption of Caiçaras from Ponta do Almada (Brazil). Hum Ecol Rev 7(2):52–62

    Google Scholar 

  17. Höft M, Barik SK, Lykke AM (1999) Quantitative ethnobotany: applications of multivariate and statistical analyses in ethnobotany. Plants and people working paper 6. UNESCO, Paris

    Google Scholar 

  18. Peroni N (2002) Coleta e análise de dados quantitativos em etnobiologia: introdução ao uso de métodos multivariados. In: Amorozo MCM, Ming LC, Silva SMP (eds) Métodos de coleta e análise de dados em etnobiologia, etnoecologia e disciplinas correlatas. UNESP/CNPq, Rio Claro

    Google Scholar 

  19. Begossi A, Hanazaki N, Tamashiro JY (2002) Medicinal plants in the Atlantic forest (Brazil) knowledge, use, and conservation. Hum Ecol 30(3):281–299

    CrossRef  Google Scholar 

  20. Peroni N, Hanazaki N (2002) Current and lost diversity of cultivated varieties, especially cassava, under swidden cultivation systems in the Brazilian Atlantic Forest. Agric Ecosyst Environ 92:171–183

    CrossRef  Google Scholar 

  21. Araujo HFP, Nishida AK (2007) Conhecimento de pescadores artesanais sobre a composição da avifauna em estuários paraibanos: uma contribuição para conservação. Ser Cienc Biol 7(1): 67–77

    Google Scholar 

  22. Harper JL, Hawksworth DL (1996) Preface. In: Hawksworth DL (ed) Biodiversity measurement and estimation. The Royal Society/Chapman and Hall, London

    Google Scholar 

  23. Merétika AHC, Peroni N, Hanazaki N (2010) Local knowledge of medicinal plants in three artisanal fishing communities (Itapoá, Southern Brazil), according to gender, age, and urbanization. Acta Bot Bras 24(2):386–394

    CrossRef  Google Scholar 

  24. Sousa RS, Hanazaki N, Lopes JB, Barros RFM (2012) Are gender and age important in understanding the distribution of local botanical knowledge in fishing communities of the Parnaíba delta environmental protection area? Ethnobot Res Appl 10:551–559

    Google Scholar 

  25. Magurran A (1988) Ecological diversity and its measurement. Croom-Helm, London

    CrossRef  Google Scholar 

  26. Magurran A (2004) Measuring biological diversity. Blackwell, Oxford

    Google Scholar 

  27. Williams VL, Witkowski ETF, Balkwill K (2005) Application of diversity indices to appraise plant availability in the traditional medicinal markets of Johannesburg, South Africa. Biodivers Conserv 14:2971–3001

    CrossRef  Google Scholar 

  28. Williams VL, Witkowski ETF, Balkwill K (2006) The use of incidence-based species richness estimators, species accumulation curves and similarity measures to appraise ethnobotanical inventories from South Africa. Biodivers Conserv 16:2495–2513

    CrossRef  Google Scholar 

  29. Colwell RK, Coddington JA (1994) Estimating terrestrial biodiversity through extrapolation. Philos Trans R Soc Lond B Biol Sci 345:101–118

    PubMed  CrossRef  CAS  Google Scholar 

  30. Bunge J, Fitzpatrick M (1993) Estimating the number of species: a review. J Am Stat Assoc 88:364–373

    Google Scholar 

  31. Gotelli N, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    CrossRef  Google Scholar 

  32. Colwell RK (2007) User’s guide to EstimateS7.5: statistical estimation of species richness and shared species from samples, Version 8.0. http://www.purl.oclc.org/estimates. Accessed 10 Aug 2007

  33. Sanders HL (1968) Marine benthic diversity: a comparative study. Am Nat 102:243–282

    CrossRef  Google Scholar 

  34. Hurlbert SA (1971) The nonconcept of species diversity: a critique and alternative parameters. Ecology 52(4):577–586

    CrossRef  Google Scholar 

  35. Colwell RK (2007) EstimateS: statistical estimation of species richness and shared species from samples, Version 8.0. http://www.purl.oclc.org/estimates. Accessed 10 Aug 2007

  36. Santos AJ (2003) Estimativas de riqueza em espécies. In: Cullen L Jr, Rudran R, Valladares-Pádua C (eds) Métodos de estudo em biologia da conservação e manejo da vida silvestre. Editora da UFPR, Curitiba

    Google Scholar 

  37. Alves R, Lima JR, Araujo H (2012) The live bird trade in Brazil and its conservation implications: an overview. Bird Conserv Int 23:53–65. doi:10.1017/S095927091200010X

    CrossRef  Google Scholar 

  38. Chao A (1984) Non-parametric estimation of the number of classes in a population. Scand J Stat 11:265–270

    Google Scholar 

  39. Chao A (1987) Estimating the population size for capture-recapture data with unequal catchability. Biometrics 43:783–791

    PubMed  CrossRef  CAS  Google Scholar 

  40. Chao A, Lee SM (1992) Estimating the number of classes via sample coverage. J Am Stat Assoc 87:210–217

    CrossRef  Google Scholar 

  41. Chazdon RL, Colwell RK, Denslow JS, Guariguata MR (1998) Statistical methods for estimating species richness of woody regeneration in primary and secondary rain forests of NE Costa Rica. In: Dallmeier F, Comiskey JA (eds) Forest biodiversity research, monitoring and modeling: conceptual background and Old World case studies. Parthenon, Paris

    Google Scholar 

  42. Chao A, Hwang WH, Chen YC, Kuo CY (2000) Estimating the number of shared species in two communities. Stat Sin 10:227–246

    Google Scholar 

  43. Smith EP, Van Belle G (1984) Nonparametric estimation of species richness. Biometrics 40:119–129

    CrossRef  Google Scholar 

  44. Begossi A, Hanazaki N, Peroni N (2001) Knowledge and use of biodiversity in Brazilian hot spots. Environ Dev Sustain 2(3–4):177–193

    Google Scholar 

  45. Walther BA, Moore JL (2005) The concepts of bias, precision and accuracy, and their use in testing the performance of species richness estimators, with a literature review of estimator performance. Ecography 28:815–829

    CrossRef  Google Scholar 

  46. Whittaker RH (1972) Evolution and measurement of species diversity. Taxon 21:213–251

    CrossRef  Google Scholar 

  47. Figueiredo GM, Leitão-Filho HF, Begossi A (1993) Ethnobotany of Atlantic forest coastal communities: diversity of plants uses in Gamboa (Itacuruçá island, Brazil). Hum Ecol 21(4):419–430

    CrossRef  Google Scholar 

  48. Figueiredo GM, Leitão-Filho HF, Begossi A (1997) Ethnobotany of Atlantic forest coastal communities II: diversity of plant uses at Sepetiba bay (SE Brazil). Hum Ecol 25(2):353–360

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Appendix 1: Formulas for Species Richness Estimators (Adapted from [32, 41])

Appendix 1: Formulas for Species Richness Estimators (Adapted from [32, 41])

Estimators
Jack 1: S jack 1 = S obs + Q 1(m − 1)/m
Jack 2: S jack 2 = S obs + {[Q 1(2 m − 3)/m] − [Q 2(m − 2)2/m(m − 1)]}
Chao 1: S chao 1 = S obs + F 21 /2F 2
Chao 2a: S chao 2 = S obs + Q 21 /2Q 2
ACE: S ace = S abund + (S raro/C ace) + (F 1/C ace)ϒ 2ace
ICE: S ice = S freq + (S infreq/C ice) + (Q 1/C ice)ϒ 2ice
Bootstrap: \( {S}_{boot}={S}_{obs}+{\displaystyle \sum}_{K=1}^{S_{obs}}{\left(1-{p}_k\right)}^m \)
 Where
S obs: total number of species observed in a set of samples
S abund: number of abundant species (with more than ten individuals)
S raro: number of rare species (with ten or less individuals)
S freq: number of most frequent species (present in more than ten samples)
S infreq: number of less frequent species (present in ten or less samples)
m: total number of samples
Q 1: number of “singletons” (species represented by exactly one individual)
Q 2: number of “doubletons” (species represented by exactly two individuals)
F 1: number of “uniques” (species present only in one sample)
F 2: number of “duplicates” (species present in exactly two samples)
C ace: abundance-based coverage estimator
C ice: incidence-based coverage estimator
p k : proportion of samples that count species k
 ϒ 2ace : estimation of variation coefficient F 1 for rare species
 ϒ 2ice : estimation of variation coefficient Q 1 for less frequent species
  1. aThere are special cases which may be consulted: http://viceroy.eeb.uconn.edu/EstimateS/EstimateSPages/EstSUsersGuide/EstimateSUsersGuide.htm#AppendixA

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Peroni, N., Araujo, H.F.P., Hanazaki, N. (2014). Ecological Methods in Ethnobotanical and Ethnobiological Research: Using Diversity Measurements and Richness Estimators. In: Albuquerque, U., Cruz da Cunha, L., de Lucena, R., Alves, R. (eds) Methods and Techniques in Ethnobiology and Ethnoecology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8636-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8636-7_25

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8635-0

  • Online ISBN: 978-1-4614-8636-7

  • eBook Packages: Springer Protocols