Skip to main content

In Vitro and In Vivo Antibacterial and Antifungal Screening of Natural Plant Products: Prospective Standardization of Basic Methods

Part of the Springer Protocols Handbooks book series (SPH)

Abstract

Researchers have conducted tests for antimicrobial activity of natural products by several methods, and a huge collection of results has been generated. However, the lack of standardization of basic methods of investigation has led to accumulation of non-useful data. The diversity of protocols has created divergences among specialists, and often different results are obtained with the same plant extract. Although antimicrobial tests for natural products have not been standardized by regulatory agencies, in this chapter, we recommend the use of some technical parameters for susceptibility testing reviewed by the Clinical and Laboratories Standards Institute.

Key words

  • Agar-diffusion assay
  • Microdilution assay
  • Essential oil
  • Plant extract

This is a preview of subscription content, access via your institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4614-8636-7_17
  • Chapter length: 17 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   109.00
Price excludes VAT (USA)
  • ISBN: 978-1-4614-8636-7
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   149.00
Price excludes VAT (USA)
Hardcover Book
USD   219.99
Price excludes VAT (USA)
Fig. 1
Fig. 2
Fig. 3

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. World Health Organization (2012) World health statistics. www.who.int

  2. Hoffmann S, Batz MB, Morris JG Jr (2012) Annual cost of illness and quality-adjusted life year losses in the United States due to 14 foodborne pathogens. J Food Prot 75:1292–1302

    PubMed  CrossRef  Google Scholar 

  3. Hawkey PM, Jones AM (2009) The changing epidemiology of resistance. J Antimicrob Chemother 64(suppl 1):i3–i10

    PubMed  CrossRef  CAS  Google Scholar 

  4. Johnson T, Jordan D, Kariyawasam S et al (2010) Sequence analysis and characterization of a transferable hybrid plasmid encoding multidrug resistance and enabling zoonotic potential for extraintestinal Escherichia coli. Infect Immun 78:1931–1942

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  5. Cercenado E (2010) Update of antimicrobial resistance in Gram-positive microorganisms. Med Clin (Barc) 135(3):10–15

    CrossRef  Google Scholar 

  6. Baquero F (2012) Metagenomic epidemiology: a public health need for the control of antimicrobial resistance. Clin Microbiol Infect 18(4):67–73

    PubMed  CrossRef  CAS  Google Scholar 

  7. Oliveira ACD, Reis SMM, Vasconcellos AG (2011) Technological prospecting for patents on herbal medicines in Brazil. Int Res J Biotechnol 2(5):78–84

    Google Scholar 

  8. Fabricant DS, Farnsworth NR (2001) The value of plants used in traditional medicine for drug discovery. Environ Health Perspect 109(1):69–75

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  9. Albuquerque UP (2010) Implications of ethnobotanical studies on bioprospecting strategies of new drugs in semi-arid regions. Open Complement Med J 2:21–23

    CrossRef  Google Scholar 

  10. Jones WP, Kinghorn AD (2012) Extraction of plant secondary metabolites. Methods Mol Biol 864:341–366

    PubMed  CrossRef  CAS  Google Scholar 

  11. Cos P, Vlietinck AJ, Berghe DV (2006) Anti-infective potential of natural products: how to develop a stronger in vitro “proof-of-concept”. J Ethnopharmacol 106:290–302

    PubMed  CrossRef  CAS  Google Scholar 

  12. Hili P, Evans CS, Veness RG (1997) Antimicrobial action of essential oils: the effect of dimethylsulphoxide on the activity of cinnamon oil. Lett Appl Microbiol 24(4):269–275

    PubMed  CrossRef  CAS  Google Scholar 

  13. Basch H, Gadebusch HH (1968) In vitro antimicrobial activity of dimethylsulfoxide. Appl Microbiol 16(12):1953

    PubMed Central  PubMed  CAS  Google Scholar 

  14. Ramos SCS, Oliveira JC, Câmara CAG et al (2009) Antibacterial and cytotoxic properties of some plant crude extracts used in Northeastern folk medicine. Braz J Pharmacog 19(2A):376–381

    Google Scholar 

  15. Silva AB, Silva T, Franco ES et al (2010) Antibacterial activity, chemical composition, and cytotoxicity of leaf’s essential oil from Brazilian pepper tree (Schinus terebinthifolius, Raddi). Braz J Microbiol 41:158–163

    PubMed Central  PubMed  CrossRef  CAS  Google Scholar 

  16. Toyang NJ, Ateh EN, Keiser J et al (2012) Toxicity, antimicrobial and anthelmintic activities of Vernonia guineensis Benth. (Asteraceae) crude extracts. J Ethnopharmacol 144(3):700–704. doi:10.1016/j.jep.2012.10.016

    PubMed  CrossRef  CAS  Google Scholar 

  17. Clinical and Laboratory Standards Institute (2003) Guideline M2-A8, standardization of sensitivity tests with antimicrobials by disc-diffusion. CLSI, Wayne, PA

    Google Scholar 

  18. Clinical and Laboratory Standards Institute (2008) Guideline M27-A3, Reference method for broth dilution antifungal susceptibility testing of yeast. CLSI, Wayne, PA

    Google Scholar 

  19. Clinical Laboratory Standards Institute (2008) Guideline M38-A2, Reference method for broth dilution antifungals susceptibility testing of conidium-forming filamentous fungi: approved standard. CLSI, Wayne, PA

    Google Scholar 

  20. Donsìb F, Annunziataa M, Vincensia M et al (2012) Design of nanoemulsion-based delivery systems of natural antimicrobials: effect of the emulsifier. J Biotechnol 159:342–350

    CrossRef  CAS  Google Scholar 

  21. Xu SX, Li YC, Liu X et al (2012) In vitro and in vivo antifungal activity of a water-dilutable cassia oil microemulsion against Geotrichum citri-aurantii. J Sci Food Agric 92(13):2668–2671

    PubMed  CrossRef  CAS  Google Scholar 

  22. Bauer AW, Kirby WM, Sherris JC et al (1966) Antibiotic susceptibility testing by a standardized single disk method. Tech Bull Regist Med Technol 36(3):49–52

    PubMed  CAS  Google Scholar 

  23. Cowan MM (1999) Plant products as antimicrobial agents. Clin Microbiol Rev 12:564–582

    PubMed Central  PubMed  CAS  Google Scholar 

  24. Hammer KA, Carson CF, Riley TV (1999) Antimicrobial activity of essential oils and other plant extracts. J Appl Microbiol 86:985–990

    PubMed  CrossRef  CAS  Google Scholar 

  25. Dorman HJD, Deans SG (2000) Antimicrobial agents from plants: antibacterial activity of plant volatile oils. J Appl Microbiol 88:308–316

    PubMed  CrossRef  CAS  Google Scholar 

  26. Rabanal RM, Arias A, Prado B (2002) Antimicrobial studies on three species of Hypericum from the Canary Islands. J Ethnopharmacol 81:287–292

    PubMed  CrossRef  CAS  Google Scholar 

  27. Springfield EP, Amabeoku G, Weitz F et al (2003) An assessment of two Carpobrotus species extracts as potential antimicrobial agents. Phytomedicine 10:434–439

    PubMed  CrossRef  CAS  Google Scholar 

  28. Voravuthikunchai S, Lortheeranuwat A, Jeeju W et al (2004) Effective medicinal plants against enterohaemorrhagic Escherichia coli. J Ethnopharmacol 94:49–54

    PubMed  CrossRef  Google Scholar 

  29. Kaewpiboon C, Lirdprapamongkol K, Srisomsap C (2012) Studies of the in vitro cytotoxic, antioxidant, lipase inhibitory and antimicrobial activities of selected Thai medicinal plants. BMC Complement Altern Med 12(1):217

    PubMed Central  PubMed  CrossRef  Google Scholar 

  30. Fontenelle RO, Morais SM, Brito EH et al (2007) Chemical composition, toxicological aspects and antifungal activity of essential oil from Lippia sidoides Cham. J Antimicrob Chemother 59(5):934–940

    PubMed  CrossRef  CAS  Google Scholar 

  31. Badiee P, Alborzi A, Moeini M et al (2012) Antifungal susceptibility of the Aspergillus species by Etest and CLSI reference methods. Arch Iran Med 15(7):429–432

    PubMed  CAS  Google Scholar 

  32. Klančnik A, Piskernik S, Jeršek B et al (2010) Evaluation of diffusion and dilution methods to determine the antibacterial activity of plant extracts. J Microbiol Methods 81:121–126

    PubMed  CrossRef  CAS  Google Scholar 

  33. Eloff JN (1998) A sensitive and quick microplate method to determine the minimal inhibitory concentration of plant extracts for bacteria. Planta Med 64:711–713

    PubMed  CrossRef  CAS  Google Scholar 

  34. Schwarz S, Silley P, Simjee S et al (2010) Editorial: assessing the antimicrobial susceptibility of bacteria obtained from animals. J Antimicrob Chemother 65:601–604. doi:10.1093/jac/dkq037

    PubMed  CrossRef  CAS  Google Scholar 

  35. Abreu A, McBainb AJ, Simões M (2012) Plants as sources of new antimicrobials and resistance-modifying agents. Nat Prod Rep 29:1007–1021

    PubMed  CrossRef  CAS  Google Scholar 

  36. Lima-Filho JV, Marinho J, Silva AB et al (2010) Proteins from latex of Calotropis procera prevent septic shock due to lethal infection by Salmonella enterica serovar Typhimurium. J Ethnopharmacol 129:327–334

    PubMed  CrossRef  CAS  Google Scholar 

  37. Oliveira RSB, Figueiredo IS, Freitas LB (2012) Inflammation induced by phytomodulatory proteins from the latex of Calotropis procera (Asclepiadaceae) protects against Salmonella infection in a murine model of typhoid fever. Inflamm Res 61:689–698

    PubMed  CrossRef  CAS  Google Scholar 

  38. Portillo FG (2001) Salmonella intracellular proliferation: where, when and how? Microbes Infect 3:1305–1311

    CrossRef  Google Scholar 

  39. Dougan G, John V, Palmer S et al (2011) Immunity to salmonellosis. Immunol Rev 240:196–210

    PubMed  CrossRef  CAS  Google Scholar 

  40. Libby SJ, Brehm MA, Greiner DL (2010) Humanized nonobese diabetic-scid IL2rgammanull mice are susceptible to lethal Salmonella Typhi infection. Proc Natl Acad Sci U S A 107:15589–15594

    PubMed Central  PubMed  CrossRef  Google Scholar 

  41. Demuth A, Goebel W, Beuscher HU (1996) Differential regulation of cytokine and cytokine receptor mRNA expression upon infection of bone marrow-derived macrophages with Listeria monocytogenes. Infect Immun 64:347583

    Google Scholar 

  42. Vázquez-Boland JA, Kuhn M, Berche P (2001) Listeria pathogenesis and molecular virulence determinants. Clin Microbiol Rev 14:584–640

    PubMed Central  PubMed  CrossRef  Google Scholar 

  43. Hof F, Nichterlein TE, Kretschmar M (1997) Management of listeriosis. Clin Microbiol Rev 10:345–357

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Van Der Horst CM, Saag MS, Cloud GA et al (1997) Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. N Engl J Med 337:15–21

    PubMed  CrossRef  Google Scholar 

  45. Capilla J, Maffei CM, Clemons KV et al (2006) Experimental systemic infection with Cryptococcus neoformans var. grubii and Cryptococcus gattii in normal and immunodeficient mice. Med Mycol 44:601–610

    PubMed  CrossRef  Google Scholar 

  46. Chakrabarti A (2007) Epidemiology of central nervous system mycoses. Neurol India 55:191–197

    PubMed  CrossRef  Google Scholar 

  47. Medeiros CS, Pontes-Filho NT, Camara CA et al (2010) Antifungal activity of the naphthoquinone beta-lapachone against disseminated infection with Cryptococcus neoformans var. neoformans in dexamethasone-immunosuppressed Swiss mice. Braz J Med Biol Res 43:345–349

    PubMed  CrossRef  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2014 Springer Science+Business Media New York

About this protocol

Cite this protocol

Lima-Filho, J.V., de Aguiar Cordeiro, R. (2014). In Vitro and In Vivo Antibacterial and Antifungal Screening of Natural Plant Products: Prospective Standardization of Basic Methods. In: Albuquerque, U., Cruz da Cunha, L., de Lucena, R., Alves, R. (eds) Methods and Techniques in Ethnobiology and Ethnoecology. Springer Protocols Handbooks. Humana Press, New York, NY. https://doi.org/10.1007/978-1-4614-8636-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-8636-7_17

  • Published:

  • Publisher Name: Humana Press, New York, NY

  • Print ISBN: 978-1-4614-8635-0

  • Online ISBN: 978-1-4614-8636-7

  • eBook Packages: Springer Protocols