Skip to main content

Visualization of Mobility by Atomic Force Microscopy

  • Protocol
  • First Online:

Part of the book series: Methods in Molecular Biology ((MIMB,volume 896))

Abstract

Intrinsically disordered regions (IDRs) of proteins are very thin and hence hard to be visualized by electron microscopy. Thus far, only high-speed atomic force microscopy (HS-AFM) can visualize them. The molecular movies identify the alignment of IDRs and ordered regions in an intrinsically disordered protein (IDP) and show undulation motion of the IDRs. The visualized tail-like structures contain the information of mechanical properties of the IDRs. Here, we describe methods of HS-AFM visualization of IDPs and methods of analyzing the obtained images to characterize IDRs.

This is a preview of subscription content, log in via an institution.

Buying options

Protocol
USD   49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Springer Nature is developing a new tool to find and evaluate Protocols. Learn more

References

  1. Miyagi A, Tsunaka Y, Uchihashi T, Mayanagi K et al (2008) Visualization of intrinsically disordered regions of proteins by high-speed atomic force microscopy. Chem Phys Chem 9:1859–1866

    Article  PubMed  CAS  Google Scholar 

  2. Binnig G, Quate CF, Gerber Ch (1986) Atomic force microscopy. Phys Rev Lett 56:930–933

    Article  PubMed  Google Scholar 

  3. Romero P, Obradovic Z, Kissinger CR et al (1997) Identifying disordered proteins from amino acid sequences. Proc IEEE Int Conf Neural Networks 1:90–95

    CAS  Google Scholar 

  4. Ando T, Kodera N, Takai E et al (2001) A high-speed atomic force microscope for studying biological macromolecules. Proc Natl Acad Sci U S A 98:12468–12472

    Article  PubMed  CAS  Google Scholar 

  5. Ando T, Uchihashi T, Fukuma T (2008) High-speed atomic force microscopy for nani-visualization of dynamic biomolecular processes. Prog Surf Sci 83:337–437

    Article  CAS  Google Scholar 

  6. Kodera N, Yamamoto D, Ishikawa R, Ando T (2010) Video imaging of walking myosin V by high-speed atomic force microscopy. Nature 468:72–76

    Article  PubMed  CAS  Google Scholar 

  7. Shibata M, Yamashita H, Uchihashi T et al (2010) High-speed atomic force microscopy shows dynamic molecular processes in photo-activated bacteriorhodopsin. Nat Nanotechnol 5:208–212

    Article  PubMed  CAS  Google Scholar 

  8. Yamamoto D, Uchihashi T, Kodera N, Ando T (2008) Anisotropic diffusion of point defects in two-dimensional crystal of streptavidin observed by high-speed atomic force microscopy. Nanotechnology 19:384009 (9 pp)

    Article  PubMed  Google Scholar 

  9. Milhiet P-E, Yamamoto D, Berthoumieu O et al (2010) Deciphering the structure, growth and assembly of amyloid-like fibrils using high-speed atomic force microscopy. PLos One 5:e13240 (8 pp)

    Article  PubMed  Google Scholar 

  10. Yamamoto D, Uchihashi T, Kodera N et al (2010) High-speed atomic force microscopy techniques for observing dynamic biomolecular processes. Methods Enzymol 475(B):541–564

    Article  PubMed  CAS  Google Scholar 

  11. Uversky VN, Dunker AK (2010) Review understanding protein non-folding. Biochim Biophys Acta 1804:1231–1264

    Article  PubMed  CAS  Google Scholar 

  12. Strobl GR (1996) The physics of polymers. Springer, Berlin

    Google Scholar 

  13. Manning GS (2006) The persistence length of DNA is reached from the persistence length of its null isomer through an internal electrostatic stretching force. Biophys J 91:3607–3616

    Article  PubMed  CAS  Google Scholar 

  14. Dietz H, Rief M (2004) Exploring the energy landscape of GFP by single-molecule mechanical experiments. Proc Natl Acad Sci U S A 101:16192–16197

    Article  PubMed  CAS  Google Scholar 

  15. Müller DJ, Baumeister W, Engel A (1999) Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc Natl Acad Sci U S A 96:13170–13174

    Article  PubMed  Google Scholar 

  16. Yamashita H, Voïtchovsky K, Uchihashi T et al (2009) Dynamics of bacteriorhodopsin 2D crystal observed by high-speed atomic force microscopy. J Struct Biol 167:153–158

    Article  PubMed  CAS  Google Scholar 

  17. Ando T, Kodera N, Maruyama D et al (2002) A High-speed atomic force microscope for studying biological macromolecules in action. Jpn J Appl Phys 41:4851–4856

    Article  CAS  Google Scholar 

  18. Kodera N, Sakashita M, Ando T (2006) Dynamic proportional-integral-differential controller for high-speed atomic force microscopy. Rev Sci Instrum 77:083704 (7 pp)

    Article  Google Scholar 

Download references

Acknowledgment

This work was supported by Grant-in-Aid for Basic Research (S) from JSPS, Knowledge Cluster/MEXT—Japan, and Grant-in Aid for Scientific Research on Innovative Areas (Research in a Proposed Research Area)/MEXT—Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Toshio Ando .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media New York

About this protocol

Cite this protocol

Ando, T., Kodera, N. (2012). Visualization of Mobility by Atomic Force Microscopy. In: Uversky, V., Dunker, A. (eds) Intrinsically Disordered Protein Analysis. Methods in Molecular Biology, vol 896. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-3704-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4614-3704-8_4

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4614-3703-1

  • Online ISBN: 978-1-4614-3704-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics