Skip to main content

Quantitative Profiling of Histone Variants and Posttranslational Modifications by Tandem Mass Spectrometry in Arabidopsis

  • Protocol
  • First Online:
Methods for Plant Nucleus and Chromatin Studies

Abstract

Histone dynamics constitute an important layer of gene regulations associated with development and growth in multicellular eukaryotes. They also stand as key determinants of plant responses to environmental changes. Histone dynamics include the exchange of histone variants as well as post-translational modifications of their amino acid residues (such as acetylation and mono/di/trimethylation), commonly referred to as histone marks. Investigating histone dynamics with a focus on combinatorial changes occurring at their residues will greatly help unravel how plants achieve phenotypic plasticity.

Mass spectrometry (MS) analysis offers unequaled resolution of the abundance of histone variants and of their marks. Indeed, relative to other techniques such as western blot or genome-wide profiling, this powerful technique allows quantifying the relative abundances of histone forms, as well as revealing coexisting marks on the same histone molecule. Yet, while MS-based histone analysis has proven efficient in several animals and other model organisms, this method stands out as more challenging in plants. One major challenge is the isolation of sufficient amounts of pure, high-quality histones, likely rendered difficult by the presence of the cell wall, for sufficiently deep and resolutive identification of histone species.

In this chapter, we describe a straightforward MS-based proteomic method, implemented to characterize histone marks from Arabidopsis thaliana seedling tissues and cell culture suspensions. After acid extraction of histones, in vitro propionylation of free lysine residues, and digestion with trypsin, a treatment at highly basic pH allows obtaining sharp spectral signals of biologically relevant histone peptide forms.

The method workflow described here shall be used to measure changes in histone marks between Arabidopsis thaliana genotypes, along developmental time-courses, or upon various stresses and treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 199.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Luger K, Mäder AW, Richmond RK et al (1997) Crystal structure of the nucleosome core particle at 2.8 a resolution. Nature 389:251–260. https://doi.org/10.1038/38444

    Article  CAS  PubMed  Google Scholar 

  2. Law JA, Jacobsen SE (2010) Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat Rev Genet 11:204–220. https://doi.org/10.1038/nrg2719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Millán-Zambrano G, Burton A, Bannister AJ, Schneider R (2022) Histone post-translational modifications—cause and consequence of genome function. Nat Rev Genet 23:563–580. https://doi.org/10.1038/s41576-022-00468-7

    Article  CAS  PubMed  Google Scholar 

  4. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080. https://doi.org/10.1126/science.1063127

    Article  CAS  PubMed  Google Scholar 

  5. Loppin B, Berger F (2020) Histone variants: the nexus of developmental decisions and epigenetic memory. Annu Rev Genet 54:121–149. https://doi.org/10.1146/annurev-genet-022620-100039

    Article  CAS  PubMed  Google Scholar 

  6. Probst AV, Desvoyes B, Gutierrez C (2020) Similar yet critically different: the distribution, dynamics and function of histone variants. J Exp Bot 71:5191–5204. https://doi.org/10.1093/jxb/eraa230

    Article  CAS  PubMed  Google Scholar 

  7. Borg M, Jiang D, Berger F (2021) Histone variants take center stage in shaping the epigenome. Curr Opin Plant Biol 61:101991. https://doi.org/10.1016/j.pbi.2020.101991

    Article  CAS  PubMed  Google Scholar 

  8. Foroozani M, Holder DH, Deal RB (2022) Histone variants in the specialization of plant chromatin. Annu Rev Plant Biol 73:149–172. https://doi.org/10.1146/annurev-arplant-070221-050044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Davarinejad H, Huang Y-C, Mermaz B et al (2022) The histone H3.1 variant regulates TONSOKU-mediated DNA repair during replication. Science 375:1281–1286. https://doi.org/10.1126/science.abm5320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Skene PJ, Henikoff S (2017) An efficient targeted nuclease strategy for high-resolution mapping of DNA binding sites. eLife 6:e21856. https://doi.org/10.7554/eLife.21856

    Article  PubMed  PubMed Central  Google Scholar 

  11. Kaya-Okur HS, Wu SJ, Codomo CA et al (2019) CUT&tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10:1930. https://doi.org/10.1038/s41467-019-09982-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Johnson L, Mollah S, Garcia BA et al (2004) Mass spectrometry analysis of Arabidopsis histone H3 reveals distinct combinations of post-translational modifications. Nucleic Acids Res 32:6511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhang K, Sridhar VV, Zhu J et al (2007) Distinctive Core histone post-translational modification patterns in Arabidopsis thaliana. PLoS One 2:e1210. https://doi.org/10.1371/journal.pone.0001210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mahrez W, Hennig L (2018) Mapping of histone modifications in plants by tandem mass spectrometry. Methods Mol Biol 1675:131–145. https://doi.org/10.1007/978-1-4939-7318-7_9

    Article  CAS  PubMed  Google Scholar 

  15. Kotliński M, Jerzmanowski A (2018) Histone H1 purification and post-translational modification profiling by high-resolution mass spectrometry. Methods Mol Biol 1675:147–166. https://doi.org/10.1007/978-1-4939-7318-7_10

    Article  CAS  PubMed  Google Scholar 

  16. Scheid R, Dowell JA, Sanders D et al (2022) Histone acid extraction and high throughput mass spectrometry to profile histone modifications in Arabidopsis thaliana. Curr Protoc 2:e527. https://doi.org/10.1002/cpz1.527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bouyssié D, Hesse A-M, Mouton-Barbosa E et al (2020) Proline: an efficient and user-friendly software suite for large-scale proteomics. Bioinformatics 36:3148–3155. https://doi.org/10.1093/bioinformatics/btaa118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Dupierris V, Hesse A-M, Menetrey J-P et al (2023) Validation of MS/MS identifications and label-free quantification using Proline. Methods Mol Biol 2426:67–89. https://doi.org/10.1007/978-1-0716-1967-4_4

    Article  CAS  PubMed  Google Scholar 

  19. Maile TM, Izrael-Tomasevic A, Cheung T et al (2015) Mass spectrometric quantification of histone post-translational modifications by a hybrid chemical labeling method. Mol Cell Proteomics 14:1148–1158. https://doi.org/10.1074/mcp.O114.046573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Daled S, Willems S, Van Puyvelde B et al (2021) Histone sample preparation for bottom-up mass spectrometry: a roadmap to informed decisions. Proteomes 9. https://doi.org/10.3390/proteomes9020017

  21. Kwak H-G, Dohmae N (2016) Proteomic characterization of histone variants in the mouse testis by mass spectrometry-based top-down analysis. BST 10:357–364. https://doi.org/10.5582/bst.2016.01090

    Article  CAS  Google Scholar 

  22. Okada T, Endo M, Singh MB, Bhalla PL (2005) Analysis of the histone H3 gene family in arabidopsis and identification of the male-gamete-specific variant AtMGH3: histone H3 gene family in Arabidopsis. Plant J 44:557–568. https://doi.org/10.1111/j.1365-313X.2005.02554.x

    Article  CAS  PubMed  Google Scholar 

  23. Nunez-Vazquez R, Desvoyes B, Gutierrez C (2022) Histone variants and modifications during abiotic stress response. Front Plant Sci 13:984702. https://doi.org/10.3389/fpls.2022.984702

    Article  PubMed  PubMed Central  Google Scholar 

  24. Benhamed M, Bertrand C, Servet C, Zhou DX (2006) Arabidopsis GCN5, HD1, and TAF1/HAF2 interact to regulate histone acetylation required for light-responsive gene expression. Plant Cell 18:2893–2903. https://doi.org/10.1105/tpc.106.043489

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Stasevich TJ, Hayashi-Takanaka Y, Sato Y et al (2014) Regulation of RNA polymerase II activation by histone acetylation in single living cells. Nature 516:272–275. https://doi.org/10.1038/nature13714

    Article  CAS  PubMed  Google Scholar 

  26. Rymen B, Kawamura A, Lambolez A et al (2019) Histone acetylation orchestrates wound-induced transcriptional activation and cellular reprogramming in Arabidopsis. Commun Biol 2:404. https://doi.org/10.1038/s42003-019-0646-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Anne-Marie Boisson for help with cell suspension preparation, Laura Turchi for help with Fig. 1 preparation and assembly, and Steve Jacobsen, Fredy Barneche, Lars Henning, and Andrzej Jerzmanowski, whose protocols inspired the one described in this chapter. This project has been partially supported by the Idex funding for Université Grenoble Alpes (ANR-15-IDEX-02) and by the Grenoble Alliance for Integrated Structural and Cell Biology (GRAL), a program of the Chemistry Biology Health Graduate School of Université Grenoble Alpes (ANR-17-EURE-0003), as well as the proteomics platform via ProFI [ANR-10-INBS-08].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Delphine Pflieger or Cristel C. Carles .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Geshkovski, V. et al. (2025). Quantitative Profiling of Histone Variants and Posttranslational Modifications by Tandem Mass Spectrometry in Arabidopsis. In: Baroux, C., Tatout, C. (eds) Methods for Plant Nucleus and Chromatin Studies. Methods in Molecular Biology, vol 2873. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-4228-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-4228-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-4227-6

  • Online ISBN: 978-1-0716-4228-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics