Skip to main content

Molecular Analysis of Copy-Back Defective Interfering RNAs of Morbilliviruses

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2808))

Abstract

Copy-back defective interfering RNAs are major contaminants of viral stock preparations of morbilliviruses and other negative strand RNA viruses. They are hybrid molecules of positive sense antigenome and negative sense genome. They possess perfectly complementary ends allowing the formation of extremely stable double-stranded RNA panhandle structures. The presence of the 3′-terminal promoter allows replication of these molecules by the viral polymerase. They thereby negatively interfere with replication of standard genomes. In addition, the double-stranded RNA stem structures are highly immunostimulatory and activate antiviral cell-intrinsic innate immune responses. Thus, copy-back defective interfering RNAs severely affect the virulence and pathogenesis of morbillivirus stocks. We describe two biochemical methods to analyze copy-back defective interfering RNAs in virus-infected samples, or purified viral RNA. First, we present our Northern blotting protocol that allows accurate size determination of defective interfering RNA molecules and estimation of the relative contamination level of virus preparations. Second, we describe a PCR approach to amplify defective interfering RNAs specifically, which allows detailed sequence analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Lazzarini RA, Keene JD, Schubert M (1981) The origins of defective interfering particles of the negative-strand RNA viruses. Cell 26:145–154. https://doi.org/10.1016/0092-8674(81)90298-1

    Article  CAS  PubMed  Google Scholar 

  2. Ziegler CM, Botten JW (2020) Defective interfering particles of negative-strand RNA viruses. Trends Microbiol 28:554–565. https://doi.org/10.1016/j.tim.2020.02.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Bellocq C, Mottet G, Roux L (1990) Wide occurrence of measles virus subgenomic RNAs in attenuated live-virus vaccines. Biologicals 18:337–343. https://doi.org/10.1016/1045-1056(90)90039-3

    Article  CAS  PubMed  Google Scholar 

  4. Siering O, Cattaneo R, Pfaller CK (2022) C proteins: controllers of orderly paramyxovirus replication and of the innate immune response. Viruses 14:137. https://doi.org/10.3390/v14010137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lamb RA (2013) Mononegavirales. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 6th edn. Wolters Kluwer; Lippincott Williams & Wilkins, Philadelphia, pp 880–884

    Google Scholar 

  6. Lamb RA, Parks GD (2013) Paramyxoviridae. In: Knipe DM, Howley PM (eds) Fields virology, vol 1, 6th edn. Wolters Kluwer; Lippincott Williams & Wilkins, Philadelphia, pp 957–995

    Google Scholar 

  7. Perrault J, Leavitt RW (1978) Characterization of snap-back RNAs in vesicular stomatitis defective interfering virus particles. J Gen Virol 38:21–34. https://doi.org/10.1099/0022-1317-38-1-21

    Article  CAS  PubMed  Google Scholar 

  8. Kolakofsky D (1976) Isolation and characterization of Sendai virus DI-RNAs. Cell 8:547–555. https://doi.org/10.1016/0092-8674(76)90223-3

    Article  CAS  PubMed  Google Scholar 

  9. Calain P, Curran J, Kolakofsky D et al (1992) Molecular cloning of natural paramyxovirus copy-back defective interfering RNAs and their expression from DNA. Virology 191:62–71. https://doi.org/10.1016/0042-6822(92)90166-M

    Article  CAS  PubMed  Google Scholar 

  10. Leppert M (1977) Further characterization of Sendai virus DI-RNAs: a model for their generation. Cell 12:539–552. https://doi.org/10.1016/0092-8674(77)90130-1

    Article  CAS  PubMed  Google Scholar 

  11. Linder A, Bothe V, Linder N et al (2021) Defective interfering genomes and the full-length viral genome trigger RIG-I after infection with vesicular stomatitis virus in a replication dependent manner. Front Immunol 12:595390. https://doi.org/10.3389/fimmu.2021.595390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Genoyer E, López CB (2019) The impact of defective viruses on infection and immunity. Annu Rev Virol 6:547–566. https://doi.org/10.1146/annurev-virology-092818-015652

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez-Aparicio MT, Garcin D, Rice CM et al (2017) Loss of Sendai virus C protein leads to accumulation of RIG-I immunostimulatory defective interfering RNA. J Gen Virol 98:1282–1293. https://doi.org/10.1099/jgv.0.000815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Pfaller CK, Radeke MJ, Cattaneo R et al (2014) Measles virus C protein impairs production of defective copyback double-stranded viral RNA and activation of protein kinase R. J Virol 88:456–468. https://doi.org/10.1128/JVI.02572-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rao DD, Huang AS (1982) Interference among defective interfering particles of vesicular stomatitis virus. J Virol 41:210–221. https://doi.org/10.1128/JVI.41.1.210-221.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Bay PH, Reichmann ME (1982) In vitro and in vivo inhibition of primary transcription of vesicular stomatitis virus by a defective interfering particle. J Virol 41:172–182. https://doi.org/10.1128/JVI.41.1.172-182.1982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hall WW, Martin SJ, Gould E (1974) Defective interfering particles produced during the replication of measles virus. Med Microbiol Immunol 160:155–164. https://doi.org/10.1007/BF02121722

    Article  CAS  PubMed  Google Scholar 

  18. Whistler T, Bellini WJ, Rota PA (1996) Generation of defective interfering particles by two vaccine strains of measles virus. Virology 220:480–484. https://doi.org/10.1006/viro.1996.0335

    Article  CAS  PubMed  Google Scholar 

  19. Calain P, Roux L (1988) Generation of measles virus defective interfering particles and their presence in a preparation of attenuated live-virus vaccine. J Virol 62:2859–2866. https://doi.org/10.1128/JVI.62.8.2859-2866.1988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pfaller CK, Mastorakos GM, Matchett WE et al (2015) Measles virus defective interfering RNAs are generated frequently and early in the absence of C protein and can be destabilized by adenosine deaminase acting on RNA-1-like hypermutations. J Virol 89:7735–7747. https://doi.org/10.1128/JVI.01017-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Siering O, Sawatsky B, Pfaller CK (2020) C protein is essential for canine distemper virus virulence and pathogenicity in ferrets. J Virol 95:e01840-20. https://doi.org/10.1128/JVI.01840-20

    Article  PubMed  Google Scholar 

  22. Pfaller CK, Bloyet L-M, Donohue RC et al (2020) The C protein is recruited to measles virus ribonucleocapsids by the phosphoprotein. J Virol 94:e01733-19. https://doi.org/10.1128/JVI.01733-19

    Article  PubMed  PubMed Central  Google Scholar 

  23. Pfaller CK, Donohue RC, Nersisyan S et al (2018) Extensive editing of cellular and viral double-stranded RNA structures accounts for innate immunity suppression and the proviral activity of ADAR1p150. PLoS Biol 16:e2006577. https://doi.org/10.1371/journal.pbio.2006577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Pfaller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Andres, F.G.M., Pfaller, C.K. (2024). Molecular Analysis of Copy-Back Defective Interfering RNAs of Morbilliviruses. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics