Skip to main content

Generation of Defective Interfering Particles of Morbilliviruses Using Reverse Genetics

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2808))

Abstract

RNA viruses generate defective genomes naturally during virus replication. Defective genomes that interfere with the infection dynamics either through resource competition or by interferon stimulation are known as defective interfering (DI) genomes. DI genomes can be successfully packaged into virus-like-particles referred to as defective interfering particles (DIPs). Such DIPs can sustainably coexist with the full-length virus particles and have been shown to negatively impact virus replication in vitro and in vivo. Here, we describe a method to generate a clonal DI genome population by reverse genetics. This method is applicable to other RNA viruses and will enable assessment of DIPs for their antiviral properties.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Von Magnus P, Gard S (1947) Studies on interference in experimental influenza. II. Purification and centrifugation experiments, Arkiv for Kemi, Mineralogi och Geologi, vol 24. Almqvist & Wiksell, Stockholm

    Google Scholar 

  2. Von Magnus P (1951) Propagation of the PR8 strain of influenza A virus in chick embryos. II. The formation of incomplete virus following inoculation of large doses of seed virus. Acta Pathol Microbiol Scand 28(3):278–293. https://doi.org/10.1111/j.1699-0463.1951.tb03693.x

  3. Ziegler JE, Lavin GI, Frank Horsfall AL (1944) Interference between the influenza viruses: II. The effect of virus rendered noninfective by ultraviolet radiation upon the multiplication of influenza viruses in the chick embryo. J Exp Med 79(4):379–400. https://doi.org/10.1084/jem.79.4.379

  4. Huang AS, Baltimore D (1970) Defective viral particles and viral disease processes. Nature 226(5243):325–327. https://doi.org/10.1038/226325a0

    Article  CAS  PubMed  Google Scholar 

  5. Johnston MD (1981) The characteristics required for a Sendai virus preparation to induce high levels of interferon in human lymphoblastoid cells. J Gen Virol 56:175–184. https://doi.org/10.1099/0022-1317-56-1-175

    Article  CAS  PubMed  Google Scholar 

  6. Patel AH, Elliott RM (1992) Characterization of Bunyamwera virus defective interfering particles. J Gen Virol 73:389–396. https://doi.org/10.1099/0022-1317-73-2-389

    Article  CAS  PubMed  Google Scholar 

  7. Manzoni TB, López CB (2018) Defective (interfering) viral genomes re-explored: impact on antiviral immunity and virus persistence. Future Virol 13(7):493–503. https://doi.org/10.2217/fvl-2018-0021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shingai M, Ebihara T, Begum NA, Kato A, Honma T, Matsumoto K, Saito H, Ogura H, Matsumoto M, Seya T (2007) Differential type I IFN-inducing abilities of wild-type versus vaccine strains of measles virus. J Immunol 179:6123–6133. https://doi.org/10.4049/jimmunol.179.9.6123

    Article  CAS  PubMed  Google Scholar 

  9. Yount JS, Kraus TA, Horvath CM, Moran TM, López CB (2006) A novel role for viral-defective interfering particles in enhancing dendritic cell maturation. J Immunol 177:4503–4513. https://doi.org/10.4049/jimmunol.177.7.4503

    Article  CAS  PubMed  Google Scholar 

  10. Vignuzzi M, López CB (2019) Defective viral genomes are key drivers of the virus–host interaction. Nat Microbiol 4(7):1075–1087. https://doi.org/10.1038/s41564-019-0465-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Felt SA, Sun Y, Jozwik A, Paras A, Habibi MS, Nickle D, Anderson L, Achouri E, Feemster KA, Cárdenas AM, Turi KN, Chang M, Hartert TV, Sengupta S, Chiu C, López CB (2021) Detection of respiratory syncytial virus defective genomes in nasal secretions is associated with distinct clinical outcomes. Nat Microbiol 6(5):672–681. https://doi.org/10.1038/s41564-021-00882-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Saira K, Lin X, DePasse JV, Halpin R, Twaddle A, Stockwell T, Angus B, Cozzi-Lepri A, Delfino M, Dugan V, Dwyer DE, Freiberg M, Horban A, Losso M, Lynfield R, Wentworth DEN, Holmes EC, Davey R, Wentworth DEN, Ghedin E (2013) Sequence analysis of in vivo defective interfering-like RNA of influenza A H1N1 pandemic virus. J Virol 87(14):8064–8074. https://doi.org/10.1128/JVI.00240-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Vasilijevic J, Zamarreño N, Carlos Oliveros J, Rodriguez-Frandsen A, Gómez G, Rodriguez G, Pérez-Ruiz M, Rey S, Barba I, Pozo F, Casas I, Nieto A, Falcó A (2017) Reduced accumulation of defective viral genomes contributes to severe outcome in influenza virus infected patients. PLoS Pathog 13(10):e1006650. https://doi.org/10.1371/journal.ppat.1006650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Aaskov J, Buzacott K, Thu HM, Lowry K, Holmes EC (2006) Long-term transmission of defective RNA viruses in humans and Aedes mosquitoes. Science 311:236. https://doi.org/10.1126/science.1115030

    Article  CAS  PubMed  Google Scholar 

  15. Noppornpanth S, Smits SL, Lien TX, Poovorawan Y, Osterhaus ADME, Haagmans BL (2007) Characterization of hepatitis C virus deletion mutants circulating in chronically infected patients. J Virol 81(22):12496–12503. https://doi.org/10.1128/JVI.01059-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li Q, Tong Y, Xu Y, Niu J, Zhong J (2018) Genetic analysis of serum-derived defective hepatitis C virus genomes revealed novel viral cis elements for virus replication and assembly. J Virol 92(7):e02182-17. https://doi.org/10.1128/JVI.02182-17

    Article  PubMed  PubMed Central  Google Scholar 

  17. Sun Y, Jain D, Koziol-White CJ, Genoyer E, Gilbert M, Tapia K, Panettieri RA, Hodinka RL, López CB (2015) Immunostimulatory defective viral genomes from respiratory syncytial virus promote a strong innate antiviral response during infection in mice and humans. PLoS Pathog 11(9):e1005122. https://doi.org/10.1371/journal.ppat.1005122

    Article  PubMed  PubMed Central  Google Scholar 

  18. Pesko KN, Fitzpatrick KA, Ryan EM, Shi P-Y, Zhang B, Lennon NJ, Newman RM, Henn MR, Ebel GD (2012) Internally deleted WNV genomes isolated from exotic birds in New Mexico: function in cells, mosquitoes, and mice. Virology 427(1):10–17. https://doi.org/10.1016/j.virol.2012.01.028

    Article  CAS  PubMed  Google Scholar 

  19. Li D, Lott WB, Lowry K, Jones A, Thu HM (2011) Defective interfering viral particles in acute dengue infections. PLoS One 6(4):19447. https://doi.org/10.1371/journal.pone.0019447

    Article  CAS  Google Scholar 

  20. Dimmock NJ, Easton AJ (2014) Defective interfering influenza virus RNAs: time to reevaluate their clinical potential as broad-spectrum antivirals? J Virol 88(10):5217–5227. https://doi.org/10.1128/JVI.03193-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Murphy SK, Parks GD (1997) Genome nucleotide lengths that are divisible by six are not essential but enhance replication of defective interfering RNAs of the paramyxovirus simian virus 5. Virology 232(1):145–157. https://doi.org/10.1006/viro.1997.8530

    Article  CAS  PubMed  Google Scholar 

  22. Tilston-Lunel NL, Welch SR, Nambulli S, de Vries RD, Ho GW, Wentworth D, Shabman R, Nichol ST, Spiropoulou CF, de Swart RL, Rennick LJ, Duprex WP (2021) Sustained replication of synthetic canine distemper virus defective genomes in vitro and in vivo. bioRxiv:2021.2006.2011.448162-442021.448106.448111.448162. https://doi.org/10.1101/2021.06.11.448162

  23. Wignall-Fleming EB, Vasou A, Young D, Short JAL, Hughes DJ, Goodbourn S, Randall RE (2020) Innate intracellular antiviral responses restrict the amplification of defective virus genomes of parainfluenza virus 5. J Virol 94(13):246–266. https://doi.org/10.1128/jvi.00246-20

    Article  CAS  Google Scholar 

  24. Komarova AV, Combredet C, Sismeiro O, Dillies MA, Jagla B, David RYS, Vabret N, Coppeé JY, Vidalain PO, Tangy F (2013) Identification of RNA partners of viral proteins in infected cells. RNA Biol 10(6):943–956. https://doi.org/10.4161/rna.24453

    Article  CAS  PubMed Central  Google Scholar 

  25. Sourimant J, Plemper RK (2016) Organization, function, and therapeutic targeting of the morbillivirus RNA-dependent RNA polymerase complex. Viruses 8:251. https://doi.org/10.3390/v8090251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Welch SR, Tilston NL, Lo MK, Whitmer SLM, Harmon JR, Scholte FEM, Spengler JR, Duprex WP, Nichol ST, Spiropoulou CF (2020) Inhibition of Nipah virus by defective interfering particles. J Infect Dis 221(Suppl 4):S460–S470. https://doi.org/10.1093/infdis/jiz564

    Article  CAS  PubMed  Google Scholar 

  27. Duprex WP, Collins FM, Rima BK (2002) Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol 76(14):7322–7328. https://doi.org/10.1128/JVI.76.14.7322-7328.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Silin D, Lyubomska O, Ludlow M, Duprex WP, Rima BK (2007) Development of a challenge-protective vaccine concept by modification of the viral RNA-dependent RNA polymerase of canine distemper virus. J Virol 81(24):13649–13658. https://doi.org/10.1128/jvi.01385-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mazure G, Grundy JE, Nygard G, Hudson M, Khan K, Srai K, Dhillon AP, Pounder RE, Wakefield AJ (1994) Measles virus induction of human endothelial cell tissue factor procoagulant activity in vitro. J Gen Virol 75(Pt 11):2863–2871. https://doi.org/10.1099/0022-1317-75-11-2863

    Article  CAS  PubMed  Google Scholar 

  30. Armitage P, Allen I (1950) Methods of estimating the LD 50 in quantal response data. J Hyg 48(3):298–322. https://doi.org/10.1017/S0022172400015084

  31. Calain P, Roux L (1993) The rule of six, a basic feature for efficient replication of Sendai virus defective interfering RNA. J Virol 67(8):4822–4830. https://doi.org/10.1128/jvi.67.8.4822-4830.1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Seki F, Ono N, Yamaguchi R, Yanagi Y (2003) Efficient isolation of wild strains of canine distemper virus in Vero cells expressing canine SLAM (CD150) and their adaptability to marmoset B95a cells. J Virol 77(18):9943–9950. https://doi.org/10.1128/jvi.77.18.9943-9950.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Beaty SM, Park A, Won ST, Hong P, Lyons M, Vigant F, Freiberg AN, tenOever BR, Duprex WP, Lee B (2017) Efficient and robust Paramyxoviridae reverse genetics systems. mSphere 2(2):e00376-00316. https://doi.org/10.1128/msphere.00376-16

    Article  CAS  Google Scholar 

  34. Buchholz UJ, Finke S, Conzelmann KK (1999) Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol 73(1):251–259. https://doi.org/10.1128/jvi.73.1.251-259.1999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sutter G, Ohlmann M, Erfle V (1995) Non-replicating vaccinia vector efficiently expresses bacteriophage T7 RNA polymerase. FEBS Lett 371(1):9–12. https://doi.org/10.1016/0014-5793(95)00843-x

    Article  CAS  PubMed  Google Scholar 

  36. Martin A, Staeheli P, Schneider U (2006) RNA polymerase II-controlled expression of antigenomic RNA enhances the rescue efficacies of two different members of the Mononegavirales independently of the site of viral genome replication. J Virol 80(12):5708–5715. https://doi.org/10.1128/jvi.02389-05

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was funded by the Defense Advanced Research Projects Agency (DARPA) INTERfering and Co-Evolving Prevention and Therapy (INTERCEPT) program (HR0011940493), Boston University and the University of Pittsburgh.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W. Paul Duprex .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rennick, L.J., Duprex, W.P., Tilston-Lunel, N.L. (2024). Generation of Defective Interfering Particles of Morbilliviruses Using Reverse Genetics. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics