Skip to main content

Optical Control of Mononegavirus Gene Expression and Replication

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2808))

Abstract

Mononegaviruses are promising tools as oncolytic and transgene vectors for gene therapy and regenerative medicine. However, when mononegaviruses are used for therapeutic applications, the viral activity must be strictly controlled due to concerns about toxicity and severe side effects. With this technology, mononegavirus vectors can be grown where they are intended and can be easily removed when they are no longer needed. In particular, a photoswitch protein called Magnet (consisting of two magnet domains) is incorporated into the hinge region between the connector and methyltransferase domains of the mononegavirus polymerase protein (L protein) to disrupt the L protein functions. Blue light (470 ± 20 nm) irradiation causes the dimerization of the two magnet domains, and the L protein is restored to activity, allowing viral gene expression and virus replication. Since the magnet domains’ dimerization is reversible, viral gene expression and replication cease when blue light irradiation is stopped.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Sharp B, Rallabandi R, Devaux P (2022) Advances in RNA viral vector technology to reprogram somatic cells: the paramyxovirus wave. Mol Diagn Ther 26(4):353–367. https://doi.org/10.1007/s40291-022-00599-x

    Article  CAS  PubMed  Google Scholar 

  2. Russell CJ, Hurwitz JL (2021) Sendai virus-vectored vaccines that express envelope glycoproteins of respiratory viruses. Viruses 13(6):1023. https://doi.org/10.3390/v13061023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Tang C, Li L, Mo T, Na J, Qian Z, Fan D, Sun X, Yao M, Pan L, Huang Y, Zhong L (2022) Oncolytic viral vectors in the era of diversified cancer therapy: from preclinical to clinical. Clin Transl Oncol 24(9):1682–1701. https://doi.org/10.1007/s12094-022-02830-x

    Article  PubMed  PubMed Central  Google Scholar 

  4. de Graaf JF, de Vor L, Fouchier RAM, van den Hoogen BG (2018) Armed oncolytic viruses: a kick-start for anti-tumor immunity. Cytokine Growth Factor Rev 41:28–39. https://doi.org/10.1016/j.cytogfr.2018.03.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ogino T, Green TJ (2019) RNA synthesis and capping by non-segmented negative strand RNA viral polymerases: lessons from a prototypic virus. Front Microbiol 10:1490. https://doi.org/10.3389/fmicb.2019.01490

    Article  PubMed  PubMed Central  Google Scholar 

  6. Liang B (2020) Structures of the mononegavirales polymerases. J Virol 94(22):e00175-20. https://doi.org/10.1128/JVI.00175-20

    Article  PubMed  PubMed Central  Google Scholar 

  7. Te Velthuis AJW, Grimes JM, Fodor E (2021) Structural insights into RNA polymerases of negative-sense RNA viruses. Nat Rev Microbiol 19(5):303–318. https://doi.org/10.1038/s41579-020-00501-8

    Article  CAS  Google Scholar 

  8. Dochow M, Krumm SA, Crowe JE Jr, Moore ML, Plemper RK (2012) Independent structural domains in paramyxovirus polymerase protein. J Biol Chem 287(9):6878–6891. https://doi.org/10.1074/jbc.M111.325258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kawano F, Suzuki H, Furuya A, Sato M (2015) Engineered pairs of distinct photoswitches for optogenetic control of cellular proteins. Nat Commun 6:6256. https://doi.org/10.1038/ncomms7256

    Article  CAS  PubMed  Google Scholar 

  10. Zoltowski BD, Vaccaro B, Crane BR (2009) Mechanism-based tuning of a LOV domain photoreceptor. Nat Chem Biol 5(11):827–834. https://doi.org/10.1038/nchembio.210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Duprex WP, Collins FM, Rima BK (2002) Modulating the function of the measles virus RNA-dependent RNA polymerase by insertion of green fluorescent protein into the open reading frame. J Virol 76(14):7322–7328. https://doi.org/10.1128/jvi.76.14.7322-7328.2002

  12. Ruedas JB, Perrault J (2009) Insertion of enhanced green fluorescent protein in a hinge region of vesicular stomatitis virus L polymerase protein creates a temperature-sensitive virus that displays no virion-associated polymerase activity in vitro. J Virol 83(23):12241–12252. https://doi.org/10.1128/JVI.01273-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tahara M, Takishima Y, Miyamoto S, Nakatsu Y, Someya K, Sato M, Tani K, Takeda M (2019) Photocontrollable mononegaviruses. Proc Natl Acad Sci USA 116(24):11587–11589. https://doi.org/10.1073/pnas.1906531116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seki F, Yamada K, Nakatsu Y, Okamura K, Yanagi Y, Nakayama T, Komase K, Takeda M (2011) The SI strain of measles virus derived from a patient with subacute sclerosing panencephalitis possesses typical genome alterations and unique amino acid changes that modulate receptor specificity and reduce membrane fusion activity. J Virol 85(22):11871–11882. https://doi.org/10.1128/JVI.05067-11

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ito N, Takayama-Ito M, Yamada K, Hosokawa J, Sugiyama M, Minamoto N (2003) Improved recovery of rabies virus from cloned cDNA using a vaccinia virus-free reverse genetics system. Microbiol Immunol 47(8):613–617. https://doi.org/10.1111/j.1348-0421.2003.tb03424.x

  16. Ono N, Tatsuo H, Hidaka Y, Aoki T, Minagawa H, Yanagi Y (2001) Measles viruses on throat swabs from measles patients use signaling lymphocytic activation molecule (CDw150) but not CD46 as a cellular receptor. J Virol 75:4399–4401. https://doi.org/10.1128/jvi.75.9.4399-4401.2001

  17. Inoue K, Shoji Y, Kurane I, Iijima T, Sakai T, Morimoto K (2003) An improved method for recovering rabies virus from cloned cDNA. J Virol Methods 107(2):229–236. https://doi.org/10.1016/S0166-0934(02)00249-5

  18. Okura T, Tahara M, Otsuki N, Sato M, Takeuchi K, Takeda M (2023) Generation of a photocontrollable recombinant bovine parainfluenza virus type 3. Microbiol Immunol 67(4):204–209. https://doi.org/10.1111/1348-0421.13052

Download references

Acknowledgments

The reverse genetics system for the RABV HEP-Flury strain was provided by Drs. Mutsuyo Takayama-Ito and Masayuki Saijo (Department of Virology 1, National Institute of Infectious Diseases). BHK/T7 cells and Vero/hSLAM cells were provided by Drs. Naoto Ito (Gifu University) and Yusuke Yanagi (Kyushu University), respectively. This study was supported by grants from JSPS under grant number 19K07768 to M. Tahara, 22K08616 to TO, and 21H02744 to M. Takeda, grants from the Naito Foundation and Research Foundation for Opto-Science and Technology to M. Takeda, and grant from the Japan Agency for Medical Research and Development (AMED) under grant number 23wm0325063 to M. Takeda.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Makoto Takeda .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tahara, M., Okura, T., Sato, M., Takeda, M. (2024). Optical Control of Mononegavirus Gene Expression and Replication. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics