Skip to main content

Multiplex Bead Assay for the Serological Surveillance of Measles and Rubella

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2808))

  • 113 Accesses

Abstract

There is increasing interest in evaluating antibody responses to multiple antigen targets in a single assay. Immunity to measles and rubella are often evaluated together because immunity is provided through combined vaccines and because routine immunization efforts and surveillance for measles and rubella pathogens are combined in many countries. The multiplex bead assay (MBA) also known as the multiplex immunoassay (MIA) described here combines the measurement of measles- and rubella-specific IgG antibodies in serum quantitatively according to international serum standards and has been successfully utilized in integrated serological surveillance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Choisy M, Trinh ST, Nguyen TND, Nguyen TH, Mai QL, Pham QT, Tran ND, Dang DA, Horby PW, Boni MF, Bryant J, Lewycka SO, Nadjm B, Van Doorn HR, Wertheim HFL (2019) Sero-prevalence surveillance to predict vaccine-preventable disease outbreaks; A lesson from the 2014 measles epidemic in Northern Vietnam. Open Forum Infect Dis 6(3):ofz030. https://doi.org/10.1093/ofid/ofz030

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hagan JE, Takashima Y, Sarankhuu A, Dashpagma O, Jantsansengee B, Pastore R, Nyamaa G, Yadamsuren B, Mulders MN, Wannemuehler KA, Anderson R, Bankamp B, Rota P, Goodson JL (2017) Risk factors for measles virus infection among adults during a large outbreak in postelimination era in Mongolia, 2015. J Infect Dis 216(10):1187–1195. https://doi.org/10.1093/infdis/jix449

    Article  PubMed  Google Scholar 

  3. Hales CM, Johnson E, Helgenberger L, Papania MJ, Larzelere M, Gopalani SV, Lebo E, Wallace G, Moturi E, Hickman CJ, Rota PA, Alexander HS, Marin M (2016) Measles outbreak associated with low vaccine effectiveness among adults in Pohnpei State, Federated States of Micronesia, 2014. Open Forum Infect Dis 3(2):ofw064. https://doi.org/10.1093/ofid/ofw064

    Article  PubMed  PubMed Central  Google Scholar 

  4. Cutts FT, Claquin P, Danovaro-Holliday MC, Rhoda DA (2016) Monitoring vaccination coverage: defining the role of surveys. Vaccine 34(35):4103–4109. https://doi.org/10.1016/j.vaccine.2016.06.053

    Article  PubMed  PubMed Central  Google Scholar 

  5. Dabbagh A, Patel MK, Dumolard L, Gacic-Dobo M, Mulders MN, Okwo-Bele JM, Kretsinger K, Papania MJ, Rota PA, Goodson JL (2017) Progress toward regional measles elimination – worldwide, 2000-2016. MMWR Morb Mortal Wkly Rep 66(42):1148–1153. https://doi.org/10.15585/mmwr.mm6642a6

    Article  PubMed  PubMed Central  Google Scholar 

  6. Durrheim DN, Orenstein WA, Schluter WW (2018) Assessing population immunity for measles elimination – the promise and peril of serosurveys. Vaccine 36(28):4001–4003. https://doi.org/10.1016/j.vaccine.2018.04.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Arnold BF, Scobie HM, Priest JW, Lammie PJ (2018) Integrated serologic surveillance of population immunity and disease transmission. Emerg Infect Dis 24(7):1188–1194. https://doi.org/10.3201/eid2407.171928

    Article  PubMed  PubMed Central  Google Scholar 

  8. Breakwell L, Anga J, Cooley G, Ropiti L, Gwyn S, Wannemuehler K, Woodring J, Ogaoga D, Martin D, Patel M, Tohme RA (2020) Seroprevalence of chronic hepatitis B virus infection and immunity to measles, rubella, tetanus and diphtheria among schoolchildren aged 6–7 years old in the Solomon Islands, 2016. Vaccine 38(30):4679–4686. https://doi.org/10.1016/j.vaccine.2020.05.029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Cooley GM, Mitja O, Goodhew B, Pillay A, Lammie PJ, Castro A, Moses P, Chen C, Ye T, Ballard R, Martin DL (2016) Evaluation of multiplex-based antibody testing for use in large-scale surveillance for yaws: a comparative study. J Clin Microbiol 54(5):1321–1325. https://doi.org/10.1128/JCM.02572-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Feldstein LR, Bennett SD, Estivariz CF, Cooley GM, Weil L, Billah MM, Uzzaman MS, Bohara R, Vandenent M, Adhikari JM, Leidman E, Hasan M, Akhtar S, Hasman A, Conklin L, Ehlman D, Alamgir A, Flora MS (2020) Vaccination coverage survey and seroprevalence among forcibly displaced Rohingya children, Cox’s Bazar, Bangladesh, 2018: a cross-sectional study. PLoS Med 17(3):e1003071. https://doi.org/10.1371/journal.pmed.1003071

    Article  PubMed  PubMed Central  Google Scholar 

  11. Smits G, Mollema L, Hahne S, de Melker H, Tcherniaeva I, van der Klis F, Berbers G (2014) Seroprevalence of rubella antibodies in The Netherlands after 32 years of high vaccination coverage. Vaccine 32(16):1890–1895. https://doi.org/10.1016/j.vaccine.2014.01.066

    Article  PubMed  Google Scholar 

  12. Vos RA, Mollema L, Kerkhof J, van den Kerkhof J, Gerstenbluth I, Janga-Jansen AVA, Stienstra Y, de Melker HE, van der Klis FRM (2019) Risk of measles and diphtheria introduction and transmission on Bonaire, Caribbean Netherlands, 2018. Am J Trop Med Hyg 101(1):237–241. https://doi.org/10.4269/ajtmh.18-0824

    Article  PubMed  PubMed Central  Google Scholar 

  13. Vos RA, Mollema L, van Binnendijk R, Veldhuijzen IK, Smits G, Janga-Jansen AVA, Baboe-Kalpoe S, Hulshof K, van der Klis FRM, Melker HE (2019) Seroepidemiology of measles, mumps and rubella on Bonaire, St. Eustatius and Saba: the first population-based serosurveillance study in Caribbean Netherlands. Vaccines (Basel) 7(4):137. https://doi.org/10.3390/vaccines7040137

    Article  CAS  PubMed  Google Scholar 

  14. Angeloni S, Das S, De Jager W, Dunbar S (2022) xMAP Cookbook, 5th edn. Luminex

    Google Scholar 

  15. Luminex (2017) Luminex FlexMAP 3D hardware user manual. Luminex. https://info.luminexcorp.com

    Google Scholar 

  16. Luminex (2017) MAGPIX hardware installation and user manual. Luminex. https://info.luminexcorp.com/

    Google Scholar 

  17. Coughlin MM, Matson Z, Sowers SB, Priest JW, Smits GP, van der Klis FRM, Mitchell A, Hickman CJ, Scobie HM, Goodson JL, Alexander JP Jr, Rota PA, Bankamp B (2021) Development of a measles and rubella multiplex bead serological assay for assessing population immunity. J Clin Microbiol 59(6):e02716-20. https://doi.org/10.1128/JCM.02716-20

    Article  PubMed  PubMed Central  Google Scholar 

  18. Smits GP, van Gageldonk PG, Schouls LM, van der Klis FR, Berbers GA (2012) Development of a bead-based multiplex immunoassay for simultaneous quantitative detection of IgG serum antibodies against measles, mumps, rubella, and varicella-zoster virus. Clin Vaccine Immunol 19(3):396–400. https://doi.org/10.1128/CVI.05537-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Matson Z, Cooley G, Simon NPA, Bankamp B, Coughlin MM (2022) shinyMBA: a novel R-shiny application for quality control of the multiplex bead assay for large scale serosurveillance studies. Manuscript accepted in Scientific Reports.

    Google Scholar 

  20. Vos RA, Mollema L, van Boven M, van Lier A, Smits G, Janga-Jansen AVA, Baboe-Kalpoe S, Hulshof K, Stienstra Y, van der Klis FRM, de Melker HE (2020) High varicella zoster virus susceptibility in Caribbean island populations: implications for vaccination. Int J Infect Dis 94:16–24. https://doi.org/10.1016/j.ijid.2020.02.047

    Article  CAS  PubMed  Google Scholar 

  21. Crooke SN, Coughlin MM, Perelygina LM (2023) Measles and rubella viruses. In: Manual of clinical microbiology, 13th edn. ASM Press, Washington, DC

    Google Scholar 

  22. Gwyn S, Aragie S, Wittberg DM, Melo JS, Dagnew A, Hailu D, Tadesse Z, Haile M, Zeru T, Nash SD, Arnold BF, Martin DL, Keenan JD (2021) Precision of serologic testing from dried blood spots using a multiplex bead assay. Am J Trop Med Hyg 105(3):822–827. https://doi.org/10.4269/ajtmh.21-0140

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Logan Melot for contributing to the images of measles and rubella viruses in Fig. 1 using BioRender. We would like to thank Dr. Diana Martin and Dr. Gretchen Cooley for their continued collaboration and expert advice on integrated serosurveillance by MBA and use of DBS.

Funding

The findings and conclusions in this report are those of the authors (Melissa M. Coughlin, Zachary Matson, and Bettina Bankamp) and do not necessarily represent the official position of the Centers for Disease Control and Prevention, US Department of Health and Human Services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Melissa M. Coughlin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Coughlin, M.M., Smits, G., Matson, Z., van Binnendijk, R., Bankamp, B. (2024). Multiplex Bead Assay for the Serological Surveillance of Measles and Rubella. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics