Skip to main content

Canine Distemper Virus Pathogenesis in the Ferret Model

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Abstract

Canine distemper virus (CDV) is a highly contagious pathogen within the morbillivirus genus infecting a wide range of different carnivore species. The virus shares most biological features with other closely related morbilliviruses, including clinical signs, tissue tropism, and replication cycle in the respective host organisms.

In the laboratory environment, experimental infections of ferrets with CDV were established as a potent surrogate model for the analysis of several aspects of the biology of the human morbillivirus, measles virus (MeV). The animals are naturally susceptible to CDV and display severe clinical signs resembling the disease seen in patients infected with MeV. As seen with MeV, CDV infects immune cells and is thus associated with a strong transient immunosuppression. Here we describe several methods to evaluate viral load and parameters of immunosuppression in blood-circulating immune cells isolated from CDV-infected animals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Minta AA, Ferrari M, Antoni S et al (2022) Progress toward regional measles elimination – worldwide, 2000-2021. MMWR Morb Mortal Wkly Rep 71:1489–1495. https://doi.org/10.15585/mmwr.mm7147a1

    Article  PubMed  PubMed Central  Google Scholar 

  2. Pfeffermann K, Dörr M, Zirkel F et al (2018) Morbillivirus pathogenesis and virus-host interactions. Adv Virus Res 100:75–98. https://doi.org/10.1016/bs.aivir.2017.12.003

    Article  CAS  PubMed  Google Scholar 

  3. Arruda B, Shen H, Zheng Y et al (2021) Novel morbillivirus as putative cause of fetal death and encephalitis among swine. Emerg Infect Dis 27:1858–1866. https://doi.org/10.3201/eid2707.203971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lee B, Ikegame S, Carmichael J et al. (2021) Zoonotic potential of a novel bat morbillivirus. Res Sq. rs.3.rs-926789. https://doi.org/10.21203/rs.3.rs-926789/v1

  5. Tatsuo H, Ono N, Tanaka K et al (2000) SLAM (CDw150) is a cellular receptor for measles virus. Nature 406:893–897. https://doi.org/10.1038/35022579

    Article  CAS  PubMed  Google Scholar 

  6. Tatsuo H, Ono N, Yanagi Y (2001) Morbilliviruses use signaling lymphocyte activation molecules (CD150) as cellular receptors. J Virol 75:5842–5850. https://doi.org/10.1128/JVI.75.13.5842-5850.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mühlebach MD, Mateo M, Sinn PL et al (2011) Adherens junction protein nectin-4 is the epithelial receptor for measles virus. Nature 480:530–533. https://doi.org/10.1038/nature10639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Noyce RS, Bondre DG, Ha MN et al (2011) Tumor cell marker PVRL4 (nectin 4) is an epithelial cell receptor for measles virus. PLoS Pathog 7:e1002240. https://doi.org/10.1371/journal.ppat.1002240

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Albrecht P, Lorenz D, Klutch MJ et al (1980) Fatal measles infection in marmosets pathogenesis and prophylaxis. Infect Immun 27:969–978. https://doi.org/10.1128/iai.27.3.969-978.1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lorenz D, Albrecht P (1980) Susceptibility of tamarins (Saguinus) to measles virus. Lab Anim Sci 30:661–665

    CAS  PubMed  Google Scholar 

  11. El Mubarak HS, Yüksel S, van Amerongen G et al (2007) Infection of cynomolgus macaques (Macaca fascicularis) and rhesus macaques (Macaca mulatta) with different wild-type measles viruses. J Gen Virol 88:2028–2034. https://doi.org/10.1099/vir.0.82804-0

    Article  CAS  PubMed  Google Scholar 

  12. Delpeut S, Sawatsky B, Wong X-X et al (2017) Nectin-4 interactions govern measles virus virulence in a new model of pathogenesis, the squirrel monkey (Saimiri sciureus). J Virol 91(11):e02490-16. https://doi.org/10.1128/JVI.02490-16

  13. Dunkin GW, Laidlaw PP (1926) Studies in dog-distemper. J Comp Pathol Ther 39:213–221. https://doi.org/10.1016/S0368-1742(26)80021-9

    Article  Google Scholar 

  14. Green RG, Ziegler NR, Green BB et al (1930) Epizootic Fox encephalitis. I. General description*. Am J Epidemiol 12:109–129. https://doi.org/10.1093/oxfordjournals.aje.a115259

    Article  Google Scholar 

  15. Roscoe DE (1993) Epizootiology of canine distemper in New Jersey raccoons. J Wildl Dis 29:390–395. https://doi.org/10.7589/0090-3558-29.3.390

    Article  CAS  PubMed  Google Scholar 

  16. Roelofs D, Schmitz KS, van Amerongen G et al (2023) Inoculation of raccoons with a wild-type-based recombinant canine distemper virus results in viremia, lymphopenia, fever, and widespread histological lesions. mSphere 8:e0014423. https://doi.org/10.1128/msphere.00144-23

    Article  CAS  PubMed  Google Scholar 

  17. von Messling V, Springfeld C, Devaux P et al (2003) A ferret model of canine distemper virus virulence and immunosuppression. J Virol 77:12579–12591. https://doi.org/10.1128/jvi.77.23.12579-12591.2003

    Article  Google Scholar 

  18. Perpiñán D, Ramis A, Tomás A et al (2008) Outbreak of canine distemper in domestic ferrets (Mustela putorius furo). Vet Rec 163:246–250. https://doi.org/10.1136/vr.163.8.246

    Article  PubMed  Google Scholar 

  19. Origgi FC, Plattet P, Sattler U et al (2012) Emergence of canine distemper virus strains with modified molecular signature and enhanced neuronal tropism leading to high mortality in wild carnivores. Vet Pathol 49:913–929. https://doi.org/10.1177/0300985812436743

    Article  CAS  PubMed  Google Scholar 

  20. Hur K, Bae JS, Choi JH et al (1999) Canine distemper virus infection in binturongs (Arctictis binturong). J Comp Pathol 121:295–299. https://doi.org/10.1053/jcpa.1999.0322

    Article  CAS  PubMed  Google Scholar 

  21. Daoust P-Y, McBurney SR, Godson DL et al (2009) Canine distemper virus-associated encephalitis in free-living lynx (Lynx canadensis) and bobcats (Lynx Rufus) of eastern Canada. J Wildl Dis 45:611–624. https://doi.org/10.7589/0090-3558-45.3.611

    Article  PubMed  Google Scholar 

  22. Qiu W, Zheng Y, Zhang S et al (2011) Canine distemper outbreak in rhesus monkeys, China. Emerg Infect Dis 17:1541–1543. https://doi.org/10.3201/eid1708.101153

    Article  PubMed  PubMed Central  Google Scholar 

  23. Seimon TA, Miquelle DG, Chang TY et al (2013) Canine distemper virus: an emerging disease in wild endangered Amur tigers (Panthera tigris altaica). mBio 4(4):e00410-13. https://doi.org/10.1128/mBio.00410-13

  24. Carré H (1905) Sur la maladie des jeunes chiens. C R Hebd Seances Acad Sci:689–690

    Google Scholar 

  25. Dunkin GW, Laidlaw PP (1926) Studies in dog-distemper. J Comp Pathol Ther 39:201–212. https://doi.org/10.1016/S0368-1742(26)80020-7

    Article  Google Scholar 

  26. Sidhu MS, Husar W, Cook SD et al (1993) Canine distemper terminal and intergenic non-protein coding nucleotide sequences: completion of the entire CDV genome sequence. Virology 193:66–72. https://doi.org/10.1006/viro.1993.1103

    Article  CAS  PubMed  Google Scholar 

  27. Radecke F, Spielhofer P, Schneider H et al (1995) Rescue of measles viruses from cloned DNA. EMBO J 14:5773–5784. https://doi.org/10.1002/j.1460-2075.1995.tb00266.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gassen U, Collins FM, Duprex WP et al (2000) Establishment of a rescue system for canine distemper virus. J Virol 74:10737–10744. https://doi.org/10.1128/jvi.74.22.10737-10744.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. von Messling V, Milosevic D, Cattaneo R (2004) Tropism illuminated: lymphocyte-based pathways blazed by lethal morbillivirus through the host immune system. Proc Natl Acad Sci USA 101:14216–14221. https://doi.org/10.1073/pnas.0403597101

    Article  Google Scholar 

  30. Ludlow M, Nguyen DT, Silin D et al (2012) Recombinant canine distemper virus strain Snyder Hill expressing green or red fluorescent proteins causes meningoencephalitis in the ferret. J Virol 86:7508–7519. https://doi.org/10.1128/JVI.06725-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. von Messling V, Zimmer G, Herrler G et al (2001) The hemagglutinin of canine distemper virus determines tropism and cytopathogenicity. J Virol 75:6418–6427. https://doi.org/10.1128/JVI.75.14.6418-6427.2001

    Article  Google Scholar 

  32. von Messling V, Svitek N, Cattaneo R (2006) Receptor (SLAM CD150) recognition and the V protein sustain swift lymphocyte-based invasion of mucosal tissue and lymphatic organs by a morbillivirus. J Virol 80:6084–6092. https://doi.org/10.1128/JVI.00357-06

    Article  CAS  Google Scholar 

  33. Sawatsky B, Wong X-X, Hinkelmann S et al (2012) Canine distemper virus epithelial cell infection is required for clinical disease but not for immunosuppression. J Virol 86:3658–3666. https://doi.org/10.1128/JVI.06414-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Sawatsky B, Cattaneo R, von Messling V (2018) Canine distemper virus spread and transmission to naive ferrets: selective pressure on signaling lymphocyte activation molecule-dependent entry. J Virol 92(15):e00669-18. https://doi.org/10.1128/JVI.00669-18

  35. Siering O, Sawatsky B, Pfaller CK (2021) C protein is essential for canine distemper virus virulence and pathogenicity in ferrets. J Virol 95(4):e01840-20. https://doi.org/10.1128/JVI.01840-20

  36. Krumm SA, Yan D, Hovingh ES et al (2014) An orally available, small-molecule polymerase inhibitor shows efficacy against a lethal morbillivirus infection in a large animal model. Sci Transl Med 6:232ra52. https://doi.org/10.1126/scitranslmed.3008517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Tilston-Lunel NL, Welch SR, Nambulli S et al (2021) Sustained replication of synthetic canine distemper virus defective genomes in vitro and in vivo. mSphere 6:e0053721. https://doi.org/10.1128/mSphere.00537-21

    Article  PubMed  Google Scholar 

  38. Summers BA, Greisen HA, Appel MJ (1984) Canine distemper encephalomyelitis: variation with virus strain. J Comp Pathol 94:65–75. https://doi.org/10.1016/0021-9975(84)90009-4

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christian K. Pfaller .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Siering, O., Sawatsky, B., Pfaller, C.K. (2024). Canine Distemper Virus Pathogenesis in the Ferret Model. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics