Skip to main content

Investigating Liquid-Liquid Phase Separation in Virus-Generated Inclusion Bodies Using Fluorescence Recovery After Photobleaching of Fluorescently Labeled Host Proteins

  • Protocol
  • First Online:
Measles and Related Morbilliviruses

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2808))

Abstract

Many negative-sense single-stranded RNA viruses within the order Mononegavirales harm humans. A common feature shared among cells infected by these viruses is the formation of subcellular membraneless structures called biomolecular condensates, also known as inclusion bodies (IBs), that form through a process called liquid-liquid phase separation (LLPS). Like many other membraneless organelles, viral IBs enrich a specific subset of viral and host proteins involved in the formation of viral particles. Elucidation of the properties and regulation of these IBs as they mature throughout the viral replication process are important for our understanding of viral replication, which may also lead to the development of alternative antiviral treatments. The protocol outlined in this chapter aims to characterize the intrinsic properties of LLPS within the measles virus (MeV, a member of Mononegavirales) IBs by using an imaging approach that fluorescently tags an IB-associated host protein. This method uses common laboratory techniques and is generalizable to any host factors as well as other viral systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Novoa RR, Calderita G, Arranz R, Fontana J, Granzow H, Risco C (2005) Virus factories: associations of cell organelles for viral replication and morphogenesis. Biol Cell 97:147–172. https://doi.org/10.1042/BC20040058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Su JM, Wilson MZ, Samuel CE, Ma D (2021) Formation and function of liquid-like viral factories in negative-sense single-stranded RNA virus infections. Viruses 13:126. https://doi.org/10.3390/v13010126

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Etibor TA, Yamauchi Y, Amorim MJ (2021) Liquid biomolecular condensates and viral lifecycles: review and perspectives. Viruses 13:366. https://doi.org/10.3390/v13030366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Jiang H, Wang S, Huang Y, He X, Cui H, Zhu X, Zheng Y (2015) Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell 163:108–122. https://doi.org/10.1016/j.cell.2015.08.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F, Hyman AA (2009) Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science 324:1729–1732. https://doi.org/10.1126/science.1172046

    Article  CAS  PubMed  Google Scholar 

  6. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB, Burlingame AL, Agard DA, Redding S, Narlikar GJ (2017) Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–240. https://doi.org/10.1038/nature22822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH (2017) Phase separation drives heterochromatin domain formation. Nature 547:241–245. https://doi.org/10.1038/nature22989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gibson BA, Doolittle LK, Schneider MWG, Jensen LE, Gamarra N, Henry L, Gerlich DW, Redding S, Rosen MK (2019) Organization of chromatin by intrinsic and regulated phase separation. Cell 179:470–484.e21. https://doi.org/10.1016/j.cell.2019.08.037

  9. Brangwynne CP, Mitchison TJ, Hyman AA (2011) Active liquid-like behavior of nucleoli determines their size and shape in Xenopus laevis oocytes. Proc Natl Acad Sci USA 108:4334–4339. https://doi.org/10.1073/pnas.1017150108

    Article  PubMed  PubMed Central  Google Scholar 

  10. Feric M, Vaidya N, Harmon TS, Mitrea DM, Zhu L, Richardson TM, Kriwacki RW, Pappu RV, Brangwynne CP (2016) Coexisting liquid phases underlie nucleolar subcompartments. Cell 165:1686–1697. https://doi.org/10.1016/j.cell.2016.04.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Handwerger KE, Cordero JA, Gall JG (2005) Cajal bodies, nucleoli, and speckles in the Xenopus oocyte nucleus have a low-density, sponge-like structure. Mol Biol Cell 16:202–211. https://doi.org/10.1091/mbc.e04-08-0742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Corpet A, Kleijwegt C, Roubille S, Juillard F, Jacquet K, Texier P, Lomonte P (2020) PML nuclear bodies and chromatin dynamics: catch me if you can! Nucleic Acids Res 48:11890–11912. https://doi.org/10.1093/nar/gkaa828

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Marzahn MR, Marada S, Lee J, Nourse A, Kenrick S, Zhao H, Ben-Nissan G, Kolaitis R-M, Peters JL, Pounds S, Errington WJ, Privé GG, Taylor JP, Sharon M, Schuck P, Ogden SK, Mittag T (2016) Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. EMBO J 35:1254–1275. https://doi.org/10.15252/embj.201593169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kroschwald S, Maharana S, Mateju D, Malinovska L, Nüske E, Poser I, Richter D, Alberti S (2015) Promiscuous interactions and protein disaggregases determine the material state of stress-inducible RNP granules. elife 4:e06807. https://doi.org/10.7554/eLife.06807

    Article  PubMed  PubMed Central  Google Scholar 

  15. Molliex A, Temirov J, Lee J, Coughlin M, Kanagaraj AP, Kim HJ, Mittag T, Taylor JP (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163:123–133. https://doi.org/10.1016/j.cell.2015.09.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, Pozniakovski A, Poser I, Maghelli N, Royer LA, Weigert M, Myers EW, Grill S, Drechsel D, Hyman AA, Alberti S (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162:1066–1077. https://doi.org/10.1016/j.cell.2015.07.047

    Article  CAS  PubMed  Google Scholar 

  17. Shin Y, Brangwynne CP (2017) Liquid phase condensation in cell physiology and disease. Science 357:eaaf4382. https://doi.org/10.1126/science.aaf4382

    Article  CAS  PubMed  Google Scholar 

  18. Banani SF, Lee HO, Hyman AA, Rosen MK (2017) Biomolecular condensates: organizers of cellular biochemistry. Nat Rev Mol Cell Biol 18:285–298. https://doi.org/10.1038/nrm.2017.7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boeynaems S, Alberti S, Fawzi NL, Mittag T, Polymenidou M, Rousseau F, Schymkowitz J, Shorter J, Wolozin B, Van Den Bosch L, Tompa P, Fuxreiter M (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28:420–435. https://doi.org/10.1016/j.tcb.2018.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Gomes E, Shorter J (2019) The molecular language of membraneless organelles. J Biol Chem 294:7115–7127. https://doi.org/10.1074/jbc.TM118.001192

    Article  CAS  PubMed  Google Scholar 

  21. Alberti S, Dormann D (2019) Liquid-liquid phase separation in disease. Annu Rev Genet 53:171–194. https://doi.org/10.1146/annurev-genet-112618-043527

    Article  CAS  PubMed  Google Scholar 

  22. Zhou Y, Su JM, Samuel CE, Ma D (2019) Measles virus forms inclusion bodies with properties of liquid organelles. J Virol 93:e00948–e00919. https://doi.org/10.1128/JVI.00948-19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nikolic J, Le Bars R, Lama Z, Scrima N, Lagaudrière-Gesbert C, Gaudin Y, Blondel D (2017) Negri bodies are viral factories with properties of liquid organelles. Nat Commun 8:58. https://doi.org/10.1038/s41467-017-00102-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Galloux M, Risso-Ballester J, Richard C-A, Fix J, Rameix-Welti M-A, Eléouët J-F (2020) Minimal elements required for the formation of respiratory syncytial virus cytoplasmic inclusion bodies in vivo and in vitro. MBio 11:e01202–e01220. https://doi.org/10.1128/mBio.01202-20

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Heinrich BS, Maliga Z, Stein DA, Hyman AA, Whelan SPJ (2018) Phase transitions drive the formation of vesicular stomatitis virus replication compartments. MBio 9:e02290–e02217. https://doi.org/10.1128/mBio.02290-17

    Article  PubMed  PubMed Central  Google Scholar 

  26. Ma D, George CX, Nomburg JL, Pfaller CK, Cattaneo R, Samuel CE (2018) Upon infection, cellular WD repeat-containing protein 5 (WDR5) localizes to cytoplasmic inclusion bodies and enhances measles virus replication. J Virol 92:e01726–e01717. https://doi.org/10.1128/JVI.01726-17

    Article  PubMed  PubMed Central  Google Scholar 

  27. BenDavid E, Pfaller CK, Pan Y, Samuel CE, Ma D (2022) Host 5′-3′ exoribonuclease XRN1 acts as a proviral factor for measles virus replication by downregulating the dsRNA-activated kinase PKR. J Virol 96:e0131922. https://doi.org/10.1128/jvi.01319-22

    Article  CAS  PubMed  Google Scholar 

  28. Alberti S, Gladfelter A, Mittag T (2019) Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell 176:419–434. https://doi.org/10.1016/j.cell.2018.12.035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McSwiggen DT, Mir M, Darzacq X, Tjian R (2019) Evaluating phase separation in live cells: diagnosis, caveats, and functional consequences. Genes Dev 33:1619–1634. https://doi.org/10.1101/gad.331520.119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taylor NO, Wei M-T, Stone HA, Brangwynne CP (2019) Quantifying dynamics in phase-separated condensates using fluorescence recovery after photobleaching. Biophys J 117:1285–1300. https://doi.org/10.1016/j.bpj.2019.08.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heinrich BS, Cureton DK, Rahmeh AA, Whelan SPJ (2010) Protein expression redirects vesicular stomatitis virus RNA synthesis to cytoplasmic inclusions. PLoS Pathog 6:e1000958. https://doi.org/10.1371/journal.ppat.1000958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Guseva S, Milles S, Jensen MR, Salvi N, Kleman J-P, Maurin D, Ruigrok RWH, Blackledge M (2020) Measles virus nucleo- and phosphoproteins form liquid-like phase-separated compartments that promote nucleocapsid assembly. Sci Adv 6:eaaz7095. https://doi.org/10.1126/sciadv.aaz7095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Alenquer M, Vale-Costa S, Etibor TA, Ferreira F, Sousa AL, Amorim MJ (2019) Influenza A virus ribonucleoproteins form liquid organelles at endoplasmic reticulum exit sites. Nat Commun 10:1629. https://doi.org/10.1038/s41467-019-09549-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Monette A, Niu M, Chen L, Rao S, Gorelick RJ, Mouland AJ (2020) Pan-retroviral nucleocapsid-mediated phase separation regulates genomic RNA positioning and trafficking. Cell Rep 31:107520. https://doi.org/10.1016/j.celrep.2020.03.084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sengupta P, Seo AY, Pasolli HA, Song YE, Johnson MC, Lippincott-Schwartz J (2019) A lipid-based partitioning mechanism for selective incorporation of proteins into membranes of HIV particles. Nat Cell Biol 21:452–461. https://doi.org/10.1038/s41556-019-0300-y

    Article  CAS  PubMed  Google Scholar 

  36. Savastano A, Ibáñez de Opakua A, Rankovic M, Zweckstetter M (2020) Nucleocapsid protein of SARS-CoV-2 phase separates into RNA-rich polymerase-containing condensates. Nat Commun 11:6041. https://doi.org/10.1038/s41467-020-19843-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Carlson CR, Asfaha JB, Ghent CM, Howard CJ, Hartooni N, Safari M, Frankel AD, Morgan DO (2020) Phosphoregulation of phase separation by the SARS-CoV-2 N protein suggests a biophysical basis for its dual functions. Mol Cell 80:1092–1103.e4. https://doi.org/10.1016/j.molcel.2020.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cascarina SM, Ross ED (2020) A proposed role for the SARS-CoV-2 nucleocapsid protein in the formation and regulation of biomolecular condensates. FASEB J 34:9832–9842. https://doi.org/10.1096/fj.202001351

    Article  CAS  PubMed  Google Scholar 

  39. Chen H, Cui Y, Han X, Hu W, Sun M, Zhang Y, Wang P-H, Song G, Chen W, Lou J (2020) Liquid-liquid phase separation by SARS-CoV-2 nucleocapsid protein and RNA. Cell Res 30:1143–1145. https://doi.org/10.1038/s41422-020-00408-2

    Article  CAS  PubMed  Google Scholar 

  40. Iserman C, Roden C, Boerneke M, Sealfon R, McLaughlin G, Jungreis I, Park C, Boppana A, Fritch E, Hou YJ, Theesfeld C, Troyanskaya OG, Baric RS, Sheahan TP, Weeks K, Gladfelter AS (2020) Specific viral RNA drives the SARS CoV-2 nucleocapsid to phase separate. bioRxiv 2020.06.11.147199. https://doi.org/10.1101/2020.06.11.147199

  41. Perdikari TM, Murthy AC, Ryan VH, Watters S, Naik MT, Fawzi NL (2020) SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation stimulated by RNA and partitions into phases of human ribonucleoproteins. bioRxiv 2020.06.09.141101. https://doi.org/10.1101/2020.06.09.141101

  42. Xu Z, Gong Q, Xia B, Groves B, Zimmermann M, Mugler C, Mu D, Matsumoto B, Seaman M, Ma D (2009) A role of histone H3 lysine 4 methyltransferase components in endosomal trafficking. J Cell Biol 186:343–353. https://doi.org/10.1083/jcb.200902146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Bailey JK, Fields AT, Cheng K, Lee A, Wagenaar E, Lagrois R, Schmidt B, Xia B, Ma D (2015) WD repeat-containing protein 5 (WDR5) localizes to the midbody and regulates abscission. J Biol Chem 290:8987–9001. https://doi.org/10.1074/jbc.M114.623611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Devaux P, von Messling V, Songsungthong W, Springfeld C, Cattaneo R (2007) Tyrosine 110 in the measles virus phosphoprotein is required to block STAT1 phosphorylation. Virology 360:72–83. https://doi.org/10.1016/j.virol.2006.09.049

    Article  CAS  PubMed  Google Scholar 

  45. Pfaller CK, Mastorakos GM, Matchett WE, Ma X, Samuel CE, Cattaneo R (2015) Measles virus defective interfering RNAs are generated frequently and early in the absence of C protein and can be destabilized by adenosine deaminase acting on RNA-1-like hypermutations. J Virol 89:7735–7747. https://doi.org/10.1128/JVI.01017-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Langereis MA, Rabouw HH, Holwerda M, Visser LJ, van Kuppeveld FJM (2015) Knockout of cGAS and STING rescues virus infection of plasmid DNA-transfected cells. J Virol 89:11169–11173. https://doi.org/10.1128/JVI.01781-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dzwokai Z. Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Asuelime-Smith, M.B.T., Ma, D.Z. (2024). Investigating Liquid-Liquid Phase Separation in Virus-Generated Inclusion Bodies Using Fluorescence Recovery After Photobleaching of Fluorescently Labeled Host Proteins. In: Ma, D.Z., Pfaller, C.K. (eds) Measles and Related Morbilliviruses. Methods in Molecular Biology, vol 2808. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3870-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3870-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3869-9

  • Online ISBN: 978-1-0716-3870-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics