Skip to main content

Highly Sensitive Analysis of Cervical Mucosal HIV-1 Infection Using Reporter Viruses Expressing Secreted Nanoluciferase

  • Protocol
  • First Online:
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2807))

Abstract

Ex vivo cervical tissue explant models offer a physiologically relevant approach for studying virus-host interactions that underlie mucosal HIV-1 transmission to women. However, the utility of cervical explant tissue (CET) models has been limited for both practical and technical reasons. These include assay variation, inadequate sensitivity for assessing HIV-1 infection and replication in tissue, and constraints imposed by the requirement for using multiple replica samples of CET to test each experimental variable and assay parameter. Here, we describe an experimental approach that employs secreted nanoluciferase (sNLuc) and current HIV-1 reporter virus technologies to overcome certain limitations of earlier ex vivo CET models. This method augments application of the CET model for investigating important questions involving mucosal HIV-1 transmission.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burgener A, McGowan I, Klatt NR (2015) HIV and mucosal barrier interactions: consequences for transmission and pathogenesis. Curr Opin Immunol 36:22–30. https://doi.org/10.1016/j.coi.2015.06.004

    Article  CAS  PubMed  Google Scholar 

  2. Global AIDS Update 2016 (2016) UNAIDS, UNAIDS

    Google Scholar 

  3. Haase AT (2011) Early events in sexual transmission of HIV and SIV and opportunities for interventions. Annu Rev Med 62:127–139. https://doi.org/10.1146/annurev-med-080709-124959

    Article  CAS  PubMed  Google Scholar 

  4. Keele BF, Estes JD (2011) Barriers to mucosal transmission of immunodeficiency viruses. Blood 118(4):839–846. https://doi.org/10.1182/blood-2010-12-325860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Smedley J, Turkbey B, Bernardo ML, Del Prete GQ, Estes JD, Griffiths GL, Kobayashi H, Choyke PL, Lifson JD, Keele BF (2014) Tracking the luminal exposure and lymphatic drainage pathways of intravaginal and intrarectal inocula used in nonhuman primate models of HIV transmission. PLoS One 9(3):e92830. https://doi.org/10.1371/journal.pone.0092830

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Stieh DJ, Maric D, Kelley ZL, Anderson MR, Hattaway HZ, Beilfuss BA, Rothwangl KB, Veazey RS, Hope TJ (2014) Vaginal challenge with an SIV-based dual reporter system reveals that infection can occur throughout the upper and lower female reproductive tract. PLoS Pathog 10(10):e1004440. https://doi.org/10.1371/journal.ppat.1004440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dezzutti CS (2015) Animal and human mucosal tissue models to study HIV biomedical interventions: can we predict success? J Int AIDS Soc 18(1):20301. https://doi.org/10.7448/ias.18.1.20301

    Article  PubMed  PubMed Central  Google Scholar 

  8. Rollenhagen C, Lathrop MJ, Macura SL, Doncel GF, Asin SN (2014) Herpes simplex virus type-2 stimulates HIV-1 replication in cervical tissues: implications for HIV-1 transmission and efficacy of anti-HIV-1 microbicides. Mucosal Immunol 7(5):1165–1174. https://doi.org/10.1038/mi.2014.3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Grivel J-C, Margolis L (2009) Use of human tissue explants to study human infectious agents. Nat Protoc 4(2):256–269. https://doi.org/10.1038/nprot.2008.245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Saba E, Grivel JC, Vanpouille C, Brichacek B, Fitzgerald W, Margolis L, Lisco A (2010) HIV-1 sexual transmission: early events of HIV-1 infection of human cervico-vaginal tissue in an optimized ex vivo model. Mucosal Immunol 3(3):280–290. https://doi.org/10.1038/mi.2010.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Estes JD, Legrand R, Petrovas C (2018) Visualizing the immune system: providing key insights into HIV/SIV infections. Front Immunol 9. https://doi.org/10.3389/fimmu.2018.00423

  12. Introini A, Boström S, Bradley F, Gibbs A, Glaessgen A, Tjernlund A, Broliden K (2017) Seminal plasma induces inflammation and enhances HIV-1 replication in human cervical tissue explants. PLoS Pathog 13(5):e1006402. https://doi.org/10.1371/journal.ppat.1006402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Merbah M, Introini A, Fitzgerald W, Grivel J-C, Lisco A, Vanpouille C, Margolis L (2011) Cervico-vaginal tissue ex vivo as a model to study early events in HIV-1 infection. Am J Reprod Immunol 65(3):268–278. https://doi.org/10.1111/j.1600-0897.2010.00967.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Introini A, Vanpouille C, Lisco A, Grivel JC, Margolis L (2013) Interleukin-7 facilitates HIV-1 transmission to cervico-vaginal tissue ex vivo. PLoS Pathog 9(2):e1003148. https://doi.org/10.1371/journal.ppat.1003148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Abraha A, Nankya IL, Gibson R, Demers K, Tebit DM, Johnston E, Katzenstein D, Siddiqui A, Herrera C, Fischetti L, Shattock RJ, Arts EJ (2009) CCR5- and CXCR4-tropic subtype C human immunodeficiency virus type 1 isolates have a lower level of pathogenic fitness than other dominant group M subtypes: implications for the epidemic. J Virol 83(11):5592–5605. https://doi.org/10.1128/jvi.02051-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Introini A, Vanpouille C, Fitzgerald W, Broliden K, Margolis L (2018) Ex vivo infection of human lymphoid tissue and female genital mucosa with human immunodeficiency virus 1 and histoculture. J Vis Exp (140). https://doi.org/10.3791/57013

  17. Merbah M, Arakelyan A, Edmonds T, Ochsenbauer C, Kappes JC, Shattock RJ, Grivel JC, Margolis LB (2012) HIV-1 expressing the envelopes of transmitted/founder or control/reference viruses have similar infection patterns of CD4 T-cells in human cervical tissue ex vivo. PLoS One 7(12):e50839. https://doi.org/10.1371/journal.pone.0050839

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Peters PJ, Gonzalez-Perez MP, Musich T, Moore Simas TA, Lin R, Morse AN, Shattock RJ, Derdeyn CA, Clapham PR (2015) Infection of ectocervical tissue and universal targeting of T-cells mediated by primary non-macrophage-tropic and highly macrophage-tropic HIV-1 R5 envelopes. Retrovirology 12:48. https://doi.org/10.1186/s12977-015-0176-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Klein K, Nankya I, Nickel G, Ratcliff AN, Meadows AAJ, Hathaway N, Bailey JA, Stieh DJ, Cheeseman HM, Carias AM, Lobritz MA, Mann JFS, Gao Y, Hope TJ, Shattock RJ, Arts EJ (2021) Deep gene sequence cluster analyses of multi-virus-infected mucosal tissue reveal enhanced transmission of acute HIV-1. J Virol 95(3). https://doi.org/10.1128/jvi.01737-20

  20. Rohan LC, Moncla BJ, Kunjara Na Ayudhya RP, Cost M, Huang Y, Gai F, Billitto N, Lynam JD, Pryke K, Graebing P, Hopkins N, Rooney JF, Friend D, Dezzutti CS (2010) In vitro and ex vivo testing of tenofovir shows it is effective as an HIV-1 microbicide. PLoS One 5(2):e9310. https://doi.org/10.1371/journal.pone.0009310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cummins JE Jr, Guarner J, Flowers L, Guenthner PC, Bartlett J, Morken T, Grohskopf LA, Paxton L, Dezzutti CS (2007) Preclinical testing of candidate topical microbicides for anti-human immunodeficiency virus type 1 activity and tissue toxicity in a human cervical explant culture. Antimicrob Agents Chemother 51(5):1770–1779. https://doi.org/10.1128/aac.01129-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Buffa V, Stieh D, Mamhood N, Hu Q, Fletcher P, Shattock RJ (2009) Cyanovirin-N potently inhibits human immunodeficiency virus type 1 infection in cellular and cervical explant models. J Gen Virol 90(Pt 1):234–243. https://doi.org/10.1099/vir.0.004358-0

    Article  CAS  PubMed  Google Scholar 

  23. Fletcher P, Kiselyeva Y, Wallace G, Romano J, Griffin G, Margolis L, Shattock R (2005) The nonnucleoside reverse transcriptase inhibitor UC-781 inhibits human immunodeficiency virus type 1 infection of human cervical tissue and dissemination by migratory cells. J Virol 79(17):11179–11186. https://doi.org/10.1128/jvi.79.17.11179-11186.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Introini A, Vanpouille C, Grivel JC, Margolis L (2014) An ex vivo model of HIV-1 infection in human lymphoid tissue and cervico-vaginal tissue. Bio Protoc 4(4). https://doi.org/10.21769/bioprotoc.1047

  25. Edmonds TG, Ding H, Yuan X, Wei Q, Smith KS, Conway JA, Wieczorek L, Brown B, Polonis V, West JT, Montefiori DC, Kappes JC, Ochsenbauer C (2010) Replication competent molecular clones of HIV-1 expressing Renilla luciferase facilitate the analysis of antibody inhibition in PBMC. Virology 408(1):1–13. https://doi.org/10.1016/j.virol.2010.08.028

    Article  CAS  PubMed  Google Scholar 

  26. 293T CRL-3216â„¢. ATCC. https://www.atcc.org/products/crl-3216. 2023

  27. Pear WS, Nolan GP, Scott ML, Baltimore D (1993) Production of high-titer helper-free retroviruses by transient transfection. Proc Natl Acad Sci USA 90(18):8392–8396. https://doi.org/10.1073/pnas.90.18.8392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Wei X, Decker JM, Liu H, Zhang Z, Arani RB, Kilby JM, Saag MS, Wu X, Shaw GM, Kappes JC (2002) Emergence of resistant human immunodeficiency virus type 1 in patients receiving fusion inhibitor (T-20) monotherapy. Antimicrob Agents Chemother 46(6):1896–1905. https://doi.org/10.1128/aac.46.6.1896-1905.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Policy NOoS (2019) NIH guidelines for research involving recombinant or synthetic nucleic acid molecules (NIH guidelines). National Institutes of Health, https://osp.od.nih.gov/

  30. Chosewood LC, Wilson DE (2009) Biosafety in microbiological and biomedical laboratories (BMBL), 5th edn. US Department of Health and Human Services

    Google Scholar 

  31. Alberti MO, Jones JJ, Miglietta R, Ding H, Bakshi RK, Edmonds TG, Kappes JC, Ochsenbauer C (2015) Optimized replicating Renilla luciferase reporter HIV-1 utilizing novel internal ribosome entry site elements for native Nef expression and function. AIDS Res Hum Retrovir 31(12):1278–1296. https://doi.org/10.1089/aid.2015.0074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Cavrois M, Banerjee T, Mukherjee G, Raman N, Hussien R, Rodriguez BA, Vasquez J, Spitzer MH, Lazarus NH, Jones JJ, Ochsenbauer C, McCune JM, Butcher EC, Arvin AM, Sen N, Greene WC, Roan NR (2017) Mass cytometric analysis of HIV entry, replication, and remodeling in tissue CD4+ T cells. Cell Rep 20(4):984–998. https://doi.org/10.1016/j.celrep.2017.06.087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. deCamp A, Hraber P, Bailer RT, Seaman MS, Ochsenbauer C, Kappes J, Gottardo R, Edlefsen P, Self S, Tang H, Greene K, Gao H, Daniell X, Sarzotti-Kelsoe M, Gorny MK, Zolla-Pazner S, LaBranche CC, Mascola JR, Korber BT, Montefiori DC (2014) Global panel of HIV-1 Env reference strains for standardized assessments of vaccine-elicited neutralizing antibodies. J Virol 88(5):2489–2507. https://doi.org/10.1128/JVI.02853-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Freel SA, Lamoreaux L, Chattopadhyay PK, Saunders K, Zarkowsky D, Overman RG, Ochsenbauer C, Edmonds TG, Kappes JC, Cunningham CK, Denny TN, Weinhold KJ, Ferrari G, Haynes BF, Koup RA, Graham BS, Roederer M, Tomaras GD (2010) Phenotypic and functional profile of HIV-inhibitory CD8 T cells elicited by natural infection and heterologous prime/boost vaccination. J Virol 84(10):4998–5006. https://doi.org/10.1128/JVI.00138-10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Naarding MA, Fernandez N, Kappes JC, Hayes P, Ahmed T, Icyuz M, Edmonds TG, Bergin P, Anzala O, Hanke T, Clark L, Cox JH, Cormier E, Ochsenbauer C, Gilmour J (2014) Development of a luciferase based viral inhibition assay to evaluate vaccine induced CD8 T-cell responses. J Immunol Methods 409:161–173. https://doi.org/10.1016/j.jim.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  36. Pollara J, McGuire E, Fouda GG, Rountree W, Eudailey J, Overman RG, Seaton KE, Deal A, Edwards RW, Tegha G, Kamwendo D, Kumwenda J, Nelson JA, Liao HX, Brinkley C, Denny TN, Ochsenbauer C, Ellington S, King CC, Jamieson DJ, van der Horst C, Kourtis AP, Tomaras GD, Ferrari G, Permar SR (2015) Association of HIV-1 envelope-specific breast milk IgA responses with reduced risk of postnatal mother-to-child transmission of HIV-1. J Virol 89(19):9952–9961. https://doi.org/10.1128/JVI.01560-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Prévost J, Richard J, Medjahed H, Alexander A, Jones J, Kappes JC, Ochsenbauer C, Finzi A (2018) Incomplete downregulation of CD4 expression affects HIV-1 Env conformation and antibody-dependent cellular cytotoxicity responses. J Virol 92(13). https://doi.org/10.1128/jvi.00484-18

  38. Sarzotti-Kelsoe M, Daniell X, Todd CA, Bilska M, Martelli A, Labranche C, Perez LG, Ochsenbauer C, Kappes JC, Rountree W, Denny TN, Montefiori DC (2014) Optimization and validation of a neutralizing antibody assay for HIV-1 in A3R5 cells. J Immunol Methods 409:147–160. https://doi.org/10.1016/j.jim.2014.02.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Ventura JD, Beloor J, Allen E, Zhang T, Haugh KA, Uchil PD, Ochsenbauer C, Kieffer C, Kumar P, Hope TJ, Mothes W (2019) Longitudinal bioluminescent imaging of HIV-1 infection during antiretroviral therapy and treatment interruption in humanized mice. PLoS Pathog 15(12):e1008161. https://doi.org/10.1371/journal.ppat.1008161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Anthony-Gonda K, Bardhi A, Ray A, Flerin N, Li M, Chen W, Ochsenbauer C, Kappes JC, Krueger W, Worden A, Schneider D, Zhu Z, Orentas R, Dimitrov DS, Goldstein H, Dropulic B (2019) Multispecific anti-HIV duoCAR-T cells display broad in vitro antiviral activity and potent in vivo elimination of HIV-infected cells in a humanized mouse model. Sci Transl Med 11(504). https://doi.org/10.1126/scitranslmed.aav5685

  41. Astronomo RD, Lemos MP, Narpala SR, Czartoski J, Fleming LB, Seaton KE, Prabhakaran M, Huang Y, Lu Y, Westerberg K, Zhang L, Gross MK, Hural J, Tieu HV, Baden LR, Hammer S, Frank I, Ochsenbauer C, Grunenberg N, Ledgerwood JE, Mayer K, Tomaras G, McDermott AB, McElrath MJ (2021) Rectal tissue and vaginal tissue from intravenous VRC01 recipients show protection against ex vivo HIV-1 challenge. J Clin Invest 131(16). https://doi.org/10.1172/jci146975

  42. Astronomo RD, Santra S, Ballweber-Fleming L, Westerberg KG, Mach L, Hensley-McBain T, Sutherland L, Mildenberg B, Morton G, Yates NL, Mize GJ, Pollara J, Hladik F, Ochsenbauer C, Denny TN, Warrier R, Rerks-Ngarm S, Pitisuttithum P, Nitayapan S, Kaewkungwal J, Ferrari G, Shaw GM, Xia SM, Liao HX, Montefiori DC, Tomaras GD, Haynes BF, McElrath JM (2016) Neutralization takes precedence over IgG or IgA isotype-related functions in mucosal HIV-1 antibody-mediated protection. EBioMedicine 14:97–111. https://doi.org/10.1016/j.ebiom.2016.11.024

    Article  PubMed  PubMed Central  Google Scholar 

  43. Bardhi A, Wu Y, Chen W, Li W, Zhu Z, Zheng JH, Wong H, Jeng E, Jones J, Ochsenbauer C, Kappes JC, Dimitrov DS, Ying T, Goldstein H (2017) Potent in vivo NK cell-mediated elimination of HIV-1-infected cells mobilized by a gp120-bispecific and hexavalent broadly neutralizing fusion protein. J Virol 91(20). https://doi.org/10.1128/JVI.00937-17

  44. Gornalusse GG, Vojtech LN, Levy CN, Hughes SM, Kim Y, Valdez R, Pandey U, Ochsenbauer C, Astronomo R, McElrath J, Hladik F (2021) Buprenorphine increases HIV-1 infection in vitro but does not reactivate HIV-1 from latency. Viruses 13(8). https://doi.org/10.3390/v13081472

  45. Mielke D, Stanfield-Oakley S, Borate B, Fisher LH, Faircloth K, Tuyishime M, Greene K, Gao H, Williamson C, Morris L, Ochsenbauer C, Tomaras G, Haynes BF, Montefiori D, Pollara J, deCamp AC, Ferrari G (2022) Selection of HIV envelope strains for standardized assessments of vaccine-elicited antibody-dependent cellular cytotoxicity-mediating antibodies. J Virol 96(2):e0164321. https://doi.org/10.1128/JVI.01643-21

    Article  PubMed  Google Scholar 

  46. Seay K, Church C, Zheng JH, Deneroff K, Ochsenbauer C, Kappes JC, Liu B, Jeng EK, Wong HC, Goldstein H (2015) In vivo activation of human NK cells by treatment with an interleukin-15 superagonist potently inhibits acute in vivo HIV-1 infection in humanized mice. J Virol 89(12):6264–6274. https://doi.org/10.1128/JVI.00563-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Seay K, Khajoueinejad N, Zheng JH, Kiser P, Ochsenbauer C, Kappes JC, Herold B, Goldstein H (2015) The vaginal acquisition and dissemination of HIV-1 infection in a novel transgenic mouse model is facilitated by coinfection with herpes simplex virus 2 and is inhibited by microbicide treatment. J Virol 89(18):9559–9570. https://doi.org/10.1128/JVI.01326-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Seay K, Qi X, Zheng JH, Zhang C, Chen K, Dutta M, Deneroff K, Ochsenbauer C, Kappes JC, Littman DR, Goldstein H (2013) Mice transgenic for CD4-specific human CD4, CCR5 and cyclin T1 expression: a new model for investigating HIV-1 transmission and treatment efficacy. PLoS One 8(5):e63537. https://doi.org/10.1371/journal.pone.0063537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Sung JA, Pickeral J, Liu L, Stanfield-Oakley SA, Lam CY, Garrido C, Pollara J, LaBranche C, Bonsignori M, Moody MA, Yang Y, Parks R, Archin N, Allard B, Kirchherr J, Kuruc JD, Gay CL, Cohen MS, Ochsenbauer C, Soderberg K, Liao HX, Montefiori D, Moore P, Johnson S, Koenig S, Haynes BF, Nordstrom JL, Margolis DM, Ferrari G (2015) Dual-Affinity Re-Targeting proteins direct T cell-mediated cytolysis of latently HIV-infected cells. J Clin Invest 125(11):4077–4090. https://doi.org/10.1172/JCI82314

    Article  PubMed  PubMed Central  Google Scholar 

  50. Pollara J, Hart L, Brewer F, Pickeral J, Packard BZ, Hoxie JA, Komoriya A, Ochsenbauer C, Kappes JC, Roederer M, Huang Y, Weinhold KJ, Tomaras GD, Haynes BF, Montefiori DC, Ferrari G (2011) High-throughput quantitative analysis of HIV-1 and SIV-specific ADCC-mediating antibody responses. Cytometry A 79(8):603–612. https://doi.org/10.1002/cyto.a.21084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mielke D, Bandawe G, Zheng J, Jones J, Abrahams MR, Bekker V, Ochsenbauer C, Garrett N, Abdool Karim S, Moore PL, Morris L, Montefiori D, Anthony C, Ferrari G, Williamson C (2021) ADCC-mediating non-neutralizing antibodies can exert immune pressure in early HIV-1 infection. PLoS Pathog 17(11):e1010046. https://doi.org/10.1371/journal.ppat.1010046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Neidleman JA, Chen JC, Kohgadai N, Müller JA, Laustsen A, Thavachelvam K, Jang KS, Stürzel CM, Jones JJ, Ochsenbauer C, Chitre A, Somsouk M, Garcia MM, Smith JF, Greenblatt RM, Münch J, Jakobsen MR, Giudice LC, Greene WC, Roan NR (2017) Mucosal stromal fibroblasts markedly enhance HIV infection of CD4+ T cells. PLoS Pathog 13(2):e1006163. https://doi.org/10.1371/journal.ppat.1006163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Fernandez N, Hayes P, Makinde J, Hare J, King D, Xu R, Rehawi O, Mezzell AT, Kato L, Mugaba S, Serwanga J, Chemweno J, Nduati E, Price MA, Osier F, Ochsenbauer C, Yue L, Hunter E, Gilmour J, investigators IpC (2022) Assessment of a diverse panel of transmitted/founder HIV-1 infectious molecular clones in a luciferase based CD8 T-cell mediated viral inhibition assay. Front Immunol 13:1029029. https://doi.org/10.3389/fimmu.2022.1029029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Hayes P, Fernandez N, Ochsenbauer C, Dalel J, Hare J, King D, Black L, Streatfield C, Kakarla V, Macharia G, Makinde J, Price M, Hunter E, Gilmour J, investigators IpC (2021) Breadth of CD8 T-cell mediated inhibition of replication of diverse HIV-1 transmitted-founder isolates correlates with the breadth of recognition within a comprehensive HIV-1 Gag, Nef, Env and Pol potential T-cell epitope (PTE) peptide set. PLoS One 16(11):e0260118. https://doi.org/10.1371/journal.pone.0260118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Ochsenbauer C, Kappes JC (2009) New virologic reagents for neutralizing antibody assays. Curr Opin HIV AIDS, 4(5):418–425. https://doi.org/10.1097/COH.0b013e32832f011e

  56. Simon-Loriere E, Galetto R, Hamoudi M, Archer J, Lefeuvre P, Martin DP, Robertson DL, Negroni M (2009) Molecular mechanisms of recombination restriction in the envelope gene of the human immunodeficiency virus. PLoS Pathog 5(5):e1000418. https://doi.org/10.1371/journal.ppat.1000418

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Balinda SN, Kapaata A, Xu R, Salazar MG, Mezzell AT, Qin Q, Herard K, Dilernia D, Kamali A, Ruzagira E, Kibengo FM, Song H, Ochsenbauer C, Salazar-Gonzalez JF, Gilmour J, Hunter E, Yue L, Kaleebu P (2022) Characterization of near full-length transmitted/founder HIV-1 subtype D and A/D recombinant genomes in a heterosexual Ugandan population (2006–2011). Viruses 14(2). https://doi.org/10.3390/v14020334

  58. Binley JM, Lybarger EA, Crooks ET, Seaman MS, Gray E, Davis KL, Decker JM, Wycuff D, Harris L, Hawkins N, Wood B, Nathe C, Richman D, Tomaras GD, Bibollet-Ruche F, Robinson JE, Morris L, Shaw GM, Montefiori DC, Mascola JR (2008) Profiling the specificity of neutralizing antibodies in a large panel of plasmas from patients chronically infected with human immunodeficiency virus type 1 subtypes B and C. J Virol 82(23):11651–11668. https://doi.org/10.1128/JVI.01762-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Roy CN, Benitez Moreno MA, Kline C, Ambrose Z (2021) CG dinucleotide removal in bioluminescent and fluorescent reporters improves HIV-1 replication and reporter gene expression for dual imaging in humanized mice. J Virol 95(19):e0044921. https://doi.org/10.1128/JVI.00449-21

    Article  PubMed  Google Scholar 

  60. Ochsenbauer C, Edmonds TG, Ding H, Keele BF, Decker J, Salazar MG, Salazar-Gonzalez JF, Shattock R, Haynes BF, Shaw GM, Hahn BH, Kappes JC (2012) Generation of transmitted/founder HIV-1 infectious molecular clones and characterization of their replication capacity in CD4 T lymphocytes and monocyte-derived macrophages. J Virol 86(5):2715–2728. https://doi.org/10.1128/jvi.06157-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John C. Kappes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Indihar, D.F., Jones, J.J., Ochsenbauer, C., Kappes, J.C. (2024). Highly Sensitive Analysis of Cervical Mucosal HIV-1 Infection Using Reporter Viruses Expressing Secreted Nanoluciferase. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols . Methods in Molecular Biology, vol 2807. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3862-0_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3862-0_21

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3861-3

  • Online ISBN: 978-1-0716-3862-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics