Skip to main content

Measurement of HIV Rev-Rev Response Element Functional Activity

  • Protocol
  • First Online:
HIV Protocols

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2807))

Abstract

Retroviruses must overcome cellular restrictions to the nucleocytoplasmic export of viral mRNAs that retain introns in order to complete their replication cycle. HIV accomplishes this using a system comprised of a trans-acting viral protein, Rev, and a cis-acting RNA secondary structure in the viral genome, the Rev-Response Element (RRE). HIV primary isolates differ with respect to the sequence and functional activity of the Rev-RRE system. Here, we describe a high throughput assay system for analyzing Rev-RRE functional activity using packageable viral vectors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rekosh D, Hammarskjold ML (2018) Intron retention in viruses and cellular genes: detention, border controls and passports. Wiley Interdiscip Rev RNA 9(3):e1470. https://doi.org/10.1002/wrna.1470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Frankel AD, Young JA (1998) HIV-1: fifteen proteins and an RNA. Annu Rev Biochem 67(1):1–25

    Article  CAS  PubMed  Google Scholar 

  3. Hadzopoulou-Cladaras M, Felber BK, Cladaras C, Athanassopoulos A, Tse A, Pavlakis GN (1989) The rev (trs/art) protein of human immunodeficiency virus type 1 affects viral mRNA and protein expression via a cis-acting sequence in the env region. J Virol 63(3):1265–1274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Malim MH, Hauber J, Le SY, Maizel JV, Cullen BR (1989) The HIV-1 rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338(6212):254–257. https://doi.org/10.1038/338254a0

    Article  CAS  PubMed  Google Scholar 

  5. Hammarskjold ML, Heimer J, Hammarskjold B, Sangwan I, Albert L, Rekosh D (1989) Regulation of human immunodeficiency virus env expression by the rev gene product. J Virol 63(5):1959–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fernandes JD, Booth DS, Frankel AD (2016) A structurally plastic ribonucleoprotein complex mediates post-transcriptional gene regulation in HIV-1. Wiley Interdiscip Rev RNA 7(4):470–486. https://doi.org/10.1002/wrna.1342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Neville M, Stutz F, Lee L, Davis LI, Rosbash M (1997) The importin-beta family member Crm1p bridges the interaction between Rev and the nuclear pore complex during nuclear export. Curr Biol 7(10):767–775. https://doi.org/10.1016/S0960-9822(06)00335-6

    Article  CAS  PubMed  Google Scholar 

  8. Sloan EA, Kearney MF, Gray LR, Anastos K, Daar ES, Margolick J, Maldarelli F, Hammarskjold ML, Rekosh D (2013) Limited nucleotide changes in the Rev response element (RRE) during HIV-1 infection alter overall Rev-RRE activity and Rev multimerization. J Virol 87(20):11173–11186. https://doi.org/10.1128/JVI.01392-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jackson PE, Tebit DM, Rekosh D, Hammarskjold ML (2016) Rev-RRE functional activity differs substantially among primary HIV-1 isolates. AIDS Res Hum Retrovir 32(9):923–934. https://doi.org/10.1089/AID.2016.0047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sherpa C, Jackson P, Gray LR, Anastos K, Grice SFL, Hammarskjold M-L, Rekosh D (2018) Evolution of the HIV-1 RRE during natural infection reveals key nucleotide changes that correlate with altered structure and increased activity over time. bioRxiv:483511

    Google Scholar 

  11. Bobbitt KR, Addo MM, Altfeld M, Filzen T, Onafuwa AA, Walker BD, Collins KL (2003) Rev activity determines sensitivity of HIV-1-infected primary T cells to CTL killing. Immunity 18(2):289–299

    Article  CAS  PubMed  Google Scholar 

  12. Dzhivhuho G, Holsey J, Honeycutt E, O’Farrell H, Rekosh D, Hammarskjold M-L, Jackson PEH (2022) HIV-1 Rev-RRE functional activity in primary isolates is highly dependent on minimal context-dependent changes in Rev. Sci Rep 12(1):18416. https://doi.org/10.1038/s41598-022-21714-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Jackson PE, Holsey J, Turse L, Hammarskjold ML, Rekosh D (2023) Rev–Rev Response Element Activity Selection Bias at the Human Immunodeficiency Virus Transmission Bottleneck. InOpen Forum Infectious Diseases 2023 Oct (Vol. 10, No. 10, p. ofad486). US: Oxford University Press. https://doi.org/10.1093/ofid/ofad486

  14. Daelemans D, Afonina E, Nilsson J, Werner G, Kjems J, Clercq ED, Pavlakis GN, Vandamme AM (2002) A synthetic HIV-1 Rev inhibitor interfering with the CRM1-mediated nuclear export. Proc Natl Acad Sci USA 99(22):14440–14445. https://doi.org/10.1073/pnas.212285299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hope TJ, Huang XJ, McDonald D, Parslow TG (1990) Steroid-receptor fusion of the human immunodeficiency virus type 1 Rev transactivator: mapping cryptic functions of the arginine-rich motif. Proc Natl Acad Sci USA 87(19):7787–7791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Jackson PE, Huang J, Sharma M, Rasmussen SK, Hammarskjold M-L, Rekosh D (2019) A novel retroviral vector system to analyze expression from mRNA with retained introns using fluorescent proteins and flow cytometry. Sci Rep 9(1):1–14

    Article  Google Scholar 

  17. Soneoka Y, Cannon PM, Ramsdale EE, Griffiths JC, Romano G, Kingsman SM, Kingsman AJ (1995) A transient three-plasmid expression system for the production of high titer retroviral vectors. Nucleic Acids Res 23(4):628–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59(2):284–291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Magin C, Lower R, Lower J (1999) cORF and RcRE, the Rev/Rex and RRE/RxRE homologues of the human endogenous retrovirus family HTDV/HERV-K. J Virol 73(11):9496–9507

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Magin-Lachmann C, Hahn S, Strobel H, Held U, Lower J, Lower R (2001) Rec (formerly Corf) function requires interaction with a complex, folded RNA structure within its responsive element rather than binding to a discrete specific binding site. J Virol 75(21):10359–10371. https://doi.org/10.1128/JVI.75.21.10359-10371.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Bray M, Prasad S, Dubay JW, Hunter E, Jeang KT, Rekosh D, Hammarskjold ML (1994) A small element from the Mason-Pfizer monkey virus genome makes human immunodeficiency virus type 1 expression and replication Rev-independent. Proc Natl Acad Sci USA 91(4):1256–1260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Li Y, Bor Y-c, Fitzgerald MP, Lee KS, Rekosh D, Hammarskjold M-L (2016) An NXF1 mRNA with a retained intron is expressed in hippocampal and neocortical neurons and is translated into a protein that functions as an Nxf1 cofactor. Mol Biol Cell 27(24):3903–3912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Bai Y, Tambe A, Zhou K, Doudna JA (2014) RNA-guided assembly of rev-RRE nuclear export complexes. elife 3:e03656. https://doi.org/10.7554/eLife.03656

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick E. H. Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jackson, P.E.H., Dzhivhuho, G., Huang, J., Hammarskjold, ML., Rekosh, D. (2024). Measurement of HIV Rev-Rev Response Element Functional Activity. In: Prasad, V.R., Kalpana, G.V. (eds) HIV Protocols . Methods in Molecular Biology, vol 2807. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3862-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3862-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3861-3

  • Online ISBN: 978-1-0716-3862-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics