Skip to main content

A Humanized Patient-Derived Xenograft Model for Pancreatic Cancer

  • Protocol
  • First Online:
Patient-Derived Xenografts

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2806))

  • 83 Accesses

Abstract

Pancreatic cancer is associated with a high mortality rate, and there are still very few effective treatment options. Patient-derived xenografts have proven to be invaluable preclinical disease models to study cancer biology and facilitate testing of novel therapeutics. However, the severely immune-deficient mice used to generate standard models lack any functional immune system, thereby limiting their utility as a tool to investigate the tumor–immune cell interface. This chapter will outline a method for establishment of “humanized” patient-derived xenografts, which are reconstituted with human immune cells to imitate the immune-rich microenvironment of pancreatic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Siegel RL, Miller KD, Wagle NS et al (2023) Cancer statistics, 2023. CA Cancer J Clin 73:17–48

    Article  PubMed  Google Scholar 

  2. Von Hoff DD, Ervin T, Arena FP et al (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369:1691–1703

    Article  Google Scholar 

  3. Conroy T, Desseigne F, Ychou M et al (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 364:1817–1825

    Article  CAS  PubMed  Google Scholar 

  4. Wade TP, Halaby IA, Stapleton DR et al (1996) Population-based analysis of treatment of pancreatic cancer and Whipple resection: Department of Defense hospitals, 1989–1994. Surgery 120:680–685. discussion 686–687

    Article  CAS  PubMed  Google Scholar 

  5. Berry W, Algar E, Kumar B et al (2017) Endoscopic ultrasound-guided fine-needle aspirate-derived preclinical pancreatic cancer models reveal panitumumab sensitivity in KRAS wild-type tumors. Int J Cancer 140:2331–2343

    Article  CAS  PubMed  Google Scholar 

  6. Nicolle R, Blum Y, Marisa L et al (2017) Pancreatic adenocarcinoma therapeutic targets revealed by tumor-stroma cross-talk analyses in patient-derived xenografts. Cell Rep 21:2458–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Allaway RJ, Fischer DA, de Abreu FB et al (2016) Genomic characterization of patient-derived xenograft models established from fine needle aspirate biopsies of a primary pancreatic ductal adenocarcinoma and from patient-matched metastatic sites. Oncotarget 7:17087–17102

    Article  PubMed  PubMed Central  Google Scholar 

  8. Lundy J, Gearing LJ, Gao H et al (2021) TLR2 activation promotes tumour growth and associates with patient survival and chemotherapy response in pancreatic ductal adenocarcinoma. Oncogene 40:6007–6022

    Article  CAS  PubMed  Google Scholar 

  9. Wang D, Pham NA, Tong J et al (2017) Molecular heterogeneity of non-small cell lung carcinoma patient-derived xenografts closely reflect their primary tumors. Int J Cancer 140:662–673

    Article  CAS  PubMed  Google Scholar 

  10. Tignanelli CJ, Herrera Loeza SG, Yeh JJ (2014) KRAS and PIK3CA mutation frequencies in patient-derived xenograft models of pancreatic and colorectal cancer are reflective of patient tumors and stable across passages. Am Surg 80:873–877

    Article  PubMed  PubMed Central  Google Scholar 

  11. Hezel AF, Kimmelman AC, Stanger BZ et al (2006) Genetics and biology of pancreatic ductal adenocarcinoma. Genes Dev 20:1218–1249

    Article  CAS  PubMed  Google Scholar 

  12. Witkiewicz AK, McMillan EA, Balaji U et al (2015) Whole-exome sequencing of pancreatic cancer defines genetic diversity and therapeutic targets. Nat Commun 6:6744

    Article  CAS  PubMed  Google Scholar 

  13. Hidalgo M, Amant F, Biankin AV et al (2014) Patient-derived xenograft models: an emerging platform for translational cancer research. Cancer Discov 4:998–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Karamitopoulou E (2019) Tumour microenvironment of pancreatic cancer: immune landscape is dictated by molecular and histopathological features. Br J Cancer 121:5–14

    Article  PubMed  PubMed Central  Google Scholar 

  15. Ho WJ, Jaffee EM, Zheng L (2020) The tumour microenvironment in pancreatic cancer – clinical challenges and opportunities. Nat Rev Clin Oncol 17:527–540

    Article  PubMed  PubMed Central  Google Scholar 

  16. Bansal P, Sonnenberg A (1995) Pancreatitis is a risk factor for pancreatic cancer. Gastroenterology 109:247–251

    Article  CAS  PubMed  Google Scholar 

  17. Steele CW, Kaur Gill NA, Jamieson NB et al (2016) Targeting inflammation in pancreatic cancer: clinical translation. World J Gastrointest Oncol 8:380–388

    Article  PubMed  PubMed Central  Google Scholar 

  18. Guerra C, Schuhmacher AJ, Cañamero M et al (2007) Chronic pancreatitis is essential for induction of pancreatic ductal adenocarcinoma by K-Ras oncogenes in adult mice. Cancer Cell 11:291–302

    Article  CAS  PubMed  Google Scholar 

  19. Guerra C, Collado M, Navas C et al (2011) Pancreatitis-induced inflammation contributes to pancreatic cancer by inhibiting oncogene-induced senescence. Cancer Cell 19:728–739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rubio-Viqueira B, Jimeno A, Cusatis G et al (2006) An in vivo platform for translational drug development in pancreatic cancer. Clin Cancer Res 12:4652–4661

    Article  CAS  PubMed  Google Scholar 

  21. Huang L, Holtzinger A, Jagan I et al (2015) Ductal pancreatic cancer modeling and drug screening using human pluripotent stem cell- and patient-derived tumor organoids. Nat Med 21:1364–1371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Boj SF, Hwang CI, Baker LA et al (2015) Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–338

    Article  CAS  PubMed  Google Scholar 

  23. Bosma GC, Custer RP, Bosma MJ (1983) A severe combined immunodeficiency mutation in the mouse. Nature 301:527–530

    Article  CAS  PubMed  Google Scholar 

  24. Ito M, Hiramatsu H, Kobayashi K et al (2002) NOD/SCID/gamma(c)(null) mouse: an excellent recipient mouse model for engraftment of human cells. Blood 100:3175–3182

    Article  CAS  PubMed  Google Scholar 

  25. Shultz LD, Brehm MA, Garcia-Martinez JV et al (2012) Humanized mice for immune system investigation: progress, promise and challenges. Nat Rev Immunol 12:786–798

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Pearson T, Greiner DL, Shultz LD (2008) Creation of “humanized” mice to study human immunity. Curr Protoc Immunol Chapter 15:15.21.11–15.21.21

    Google Scholar 

  27. Zhou Q, Facciponte J, Jin M et al (2014) Humanized NOD-SCID IL2rg−/− mice as a preclinical model for cancer research and its potential use for individualized cancer therapies. Cancer Lett 344:13–19

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joanne Lundy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lundy, J. (2024). A Humanized Patient-Derived Xenograft Model for Pancreatic Cancer. In: Saad, M.I. (eds) Patient-Derived Xenografts. Methods in Molecular Biology, vol 2806. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3858-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3858-3_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3857-6

  • Online ISBN: 978-1-0716-3858-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics