Skip to main content

Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets

  • Protocol
  • First Online:
Microfluidics Diagnostics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2804))

  • 119 Accesses

Abstract

Multiomics studies at single-cell level require small volume manipulation, high throughput analysis, and multiplexed detection, characteristics that droplet microfluidics can tackle. However, the initial step of molecule bioseparation remains challenging. Here, we describe a unique magnetic device to trap and extract magnetic particles in sub-nanoliter droplets, for compartmentalisation of detection steps. Relying on electrodeposition of NiFe structures and microfluidic manipulation, the extraction of 1 μm diameter magnetic particles was achieved at high throughput (20 droplets per second) with an efficiency close to 100% in 450 pL droplets. The first demonstration of its adaptability to single-cell analysis is demonstrated with the extraction of mRNA. Using a purified nucleic acid solution, this unique magnetic configuration was able to reach a RNA extraction rate of 72%. This is the first demonstration of a physical separation in droplets at high throughput at single-cell scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tabeling P (2005) Introduction to microfluidics. OUP, Oxford

    Book  Google Scholar 

  2. Whitesides GM (2006) The origins and the future of microfluidics. Nature 442:7101

    Article  Google Scholar 

  3. Atencia J, Beebe DJ (2005) Controlled microfluidic interfaces. Nature 437:7059

    Article  Google Scholar 

  4. Stone HA, Stroock AD, Ajdari A (2004) Engineering flows in small devices: microfluidics toward a lab-on-a-chip. Annu Rev Fluid Mech 36:381–411

    Article  Google Scholar 

  5. Ding Y, Howes PD, deMello AJ (2020) Recent advances in droplet microfluidic. Anal Chem 92:132–149

    Article  CAS  PubMed  Google Scholar 

  6. Fitarelli-Kiehl M et al (2018) Denaturation-enhanced droplet digital PCR for liquid biopsies. Clin Chem 64:1762–1771

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Seeto WJ, Tian Y, Pradhan S, Minond D, Lipke EA (2022) Droplet microfluidics-based fabrication of monodisperse poly(ethylene glycol)-fibrinogen breast cancer microspheres for automated drug screening applications. ACS Biomater Sci Eng 8:3831–3841

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Tomasi RF-X, Sart S, Champetier T, Baroud CN (2020) ndividual control and quantification of 3D spheroids in a high-density microfluidic droplet array. Cell Rep 31:107670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Langer K, Joensson HN (2020) Rapid production and recovery of cell spheroids by automated droplet microfluidics. SLAS Technol 25:111–122

    Article  CAS  PubMed  Google Scholar 

  10. Kang HM et al (2018) Multiplexed droplet single-cell RNA-sequencing using natural genetic variation. Nat Biotechnol 36:1

    Article  Google Scholar 

  11. Gierahn TM et al (2017) Seq-Well: portable, low-cost RNA sequencing of single cells at high throughput. Nat Methods 14:395–398

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Teh S-Y, Lin R, Hung L-H, Lee AP (2008) Droplet microfluidics. Lab Chip 8:198–220

    Article  CAS  PubMed  Google Scholar 

  13. Ali-Cherif A, Begolo S, Descroix S, Viovy J-L, Malaquin L (2012) Programmable magnetic tweezers and droplet microfluidic device for high-throughput nanoliter multi-step assays. Angewandte Chemie 124:10923–10927

    Article  Google Scholar 

  14. Ferraro D et al (2016) Microfluidic platform combining droplets and magnetic tweezers: application to HER2 expression in cancer diagnosis. Sci Rep 6:1

    Article  Google Scholar 

  15. Mai TD et al (2018) Single-step immunoassays and microfluidic droplet operation: Towards a versatile approach for detection of amyloid-β peptide-based biomarkers of Alzheimer’s disease. Sens Actuators B Chem 255:2126–2135

    Article  CAS  Google Scholar 

  16. Hajji I et al (2020) Droplet microfluidic platform for fast and continuous-flow RT-qPCR analysis devoted to cancer diagnosis application. Sens Actuators B Chem 303:27171

    Article  Google Scholar 

  17. Dumas S, Richerd M, Serra M, Descroix S (2022) Magnetic microtweezers: a tool for high-throughput bioseparation in sub-nanoliter droplets. Adv Mater Technol 2200747

    Google Scholar 

  18. Li X et al (2015) Desktop aligner for fabrication of multilayer microfluidic devices. Rev Sci Instrum 86:075008

    Article  PubMed  PubMed Central  Google Scholar 

  19. Guglielmotti V, Saffioti NA, Tohmé AL, Gambarotta M, Corthey G, Pallarola D (2022) A portable and affordable aligner for the assembly of microfluidic devices. HardwareX 12:e00348

    Article  PubMed  PubMed Central  Google Scholar 

  20. Tseng P, Judy JW, Di Carlo D (2012) Magnetic nanoparticle-mediated massively-parallel mechanical modulation of single-cell behavior. Nat Methods 9:1113–1119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Cottet J, Vaillier C, Buret F, Frénéa-Robin M, Renaud P (2017) A reproducible method for μm precision alignment of PDMS microchannels with on-chip electrodes using a mask aligner. Biomicrofluidics 11:064111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors acknowledge all members of the IPGG technological platform for their help with microfabrication, especially Olivier Lesage for his support in photolithography and sputtering and Bertrand Cinquin for EDX spectrometry. They also thank Koceila Aizel for support with electroplating, and Fanny Tabarin and Aude Battistella for training them on cell and molecular biology (Institut Curie, UMR168), David Hrabovsky (MPBT platform, Sorbonne University) for magnetometry measurements, and Olivier Lefebvre (C2N, Univ. Paris-Saclay) for helpful advice on electroplating. This work was supported by the Institut Pierre-Gilles de Gennes (équipement d’excellence and LABEX, “Investissement d’avenir,” program ANR-10-EQPX-34). This project has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Skodowska-Curie grant agreement No 896313.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphanie Descroix .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dumas, S., Alexandre, L., Richerd, M., Serra, M., Descroix, S. (2024). Magnetic Microtweezers for High-Throughput Bioseparation in Sub-Nanoliter Droplets. In: Taly, V., Descroix, S., Perez-Toralla, K. (eds) Microfluidics Diagnostics. Methods in Molecular Biology, vol 2804. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3850-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3850-7_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3849-1

  • Online ISBN: 978-1-0716-3850-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics