Skip to main content

Controlling the Potency of T Cell Activation Using an Optically Tunable Chimeric Antigen Receptor

  • Protocol
  • First Online:
Imaging Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2800))

  • 257 Accesses

Abstract

The ability of biological systems to convert inputs from their environment into information to guide future decisions is central to life and a matter of great importance. While we know the components of many of the signaling networks that make these decisions, our understanding of the dynamic flow of information between these parts remains far more limited. T cells are an essential white blood cell type of an adaptive immune response and can discriminate between healthy and infected cells with remarkable sensitivity. This chapter describes the use of a synthetic T-cell receptor (OptoCAR) that is optically tunable within cell conjugates, providing control over the duration, and intensity of intracellular T-cell signaling dynamics. Optical control can also provide control over signaling with high spatial precision, and the OptoCAR is likely to find application more generally when modulating T-cell function with imaging approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kholodenko BN (2006) Cell-signalling dynamics in time and space. Nat Rev Mol Cell Biol 7:165–176

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Mühlhäuser WW, Fischer A, Weber W et al (2017) Optogenetics-bringing light into the darkness of mammalian signal transduction. Biochim Biophys Acta (BBA)-Mol Cell Res 1864:280–292

    Article  Google Scholar 

  3. Castillo-Hair SM, Baerman EA, Fujita M et al (2019) Optogenetic control of bacillus subtilis gene expression. Nat Commun 10:1–11

    Article  CAS  Google Scholar 

  4. Suzuki T, Mioka T, Tanaka K et al (2020) An optogenetic system to control membrane phospholipid asymmetry through flippase activation in budding yeast. Sci Rep 10(1):1–14

    Article  CAS  Google Scholar 

  5. An-adirekkun J, Stewart CJ, Geller SH et al (2020) A yeast optogenetic toolkit (yotk) for gene expression control in saccharomyces cerevisiae. Biotechnol Bioeng 117:886–893

    Article  CAS  PubMed  Google Scholar 

  6. Baaske J, Gonschorek P, Engesser R et al (2018) Dual-controlled optogenetic system for the rapid down-regulation of protein levels in mammalian cells. Sci Rep 8:1–10

    Article  CAS  Google Scholar 

  7. Yousefi OS, Günther M, Hörner M et al (2019) Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife 8:e42475

    Google Scholar 

  8. Wend S, Wagner HJ, Müller K et al (2014) Optogenetic control of protein kinase activity in mammalian cells. ACS Synth Biol 3:280–285. https://doi.org/10.1021/sb400090s

    Article  CAS  PubMed  Google Scholar 

  9. Beyer HM, Juillot S, Herbst K et al (2015) Red light-regulated reversible nuclear localization of proteins in mammalian cells and zebrafish. ACS Synth Biol 4:951–958. https://doi.org/10.1021/acssynbio.5b00004

    Article  CAS  PubMed  Google Scholar 

  10. Bonger KM, Rakhit R, Payumo AY et al (2014) General method for regulating protein stability with light. ACS Chem Biol 9:111–115

    Article  CAS  PubMed  Google Scholar 

  11. Van Bergeijk P, Adrian M, Hoogenraad CC et al (2015) Optogenetic control of organelle transport and positioning. Nature 518:111–114

    Article  PubMed  PubMed Central  Google Scholar 

  12. Rullan M, Benzinger D, Schmidt GW et al (2018) An optogenetic platform for real-time, single-cell interrogation of stochastic transcriptional regulation. Mol Cell 70:745–756.e6. https://doi.org/10.1016/j.molcel.2018.04.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhao EM, Zhang Y, Mehl J et al (2018) Optogenetic regulation of engineered cellular metabolism for microbial chemical production. Nature 555:683–687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Nguyen NT, Huang K, Zeng H et al (2021) Nano-optogenetic engineering of CAR T cells for precision immunotherapy with enhanced safety. Nat Nanotechnol 16:1424–1434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Huang Z, Wu Y, Allen ME et al (2020) Engineering light-controllable CAR T cells for cancer immunotherapy. Sci Adv 6:eaay9209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Brownlie RJ, Zamoyska R (2013) T cell receptor signalling networks: branched, diversified and bounded. Nat Rev Immunol 13:257–269

    Article  CAS  PubMed  Google Scholar 

  17. Harris MJ, Fuyal M, James JR (2021) Quantifying persistence in the T-cell signaling network using an optically controllable antigen receptor. Mol Syst Biol 17:e10091

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wang H, Vilela M, Winkler A et al (2016) LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat Methods 13:755–758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. James JR (2018) Tuning ITAM multiplicity on T cell receptors can control potency and selectivity to ligand density. Sci Signal 11:eaan1088

    Article  PubMed  PubMed Central  Google Scholar 

  20. Mognol GP, González-Avalos E, Ghosh S et al (2019) Targeting the NFAT: AP-1 transcriptional complex on DNA with a small-molecule inhibitor. Proc Natl Acad Sci 116:9959–9968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. James JR, Vale RD (2012) Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature 487:64–69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Bugaj LJ, Lim WA (2019) High-throughput multicolor optogenetics in microwell plates. Nat Protoc 14:2205–2228

    Article  CAS  PubMed  Google Scholar 

  23. Thomas OS, Hörner M, Weber W (2020) A graphical user interface to design high-throughput optogenetic experiments with the optoplate-96. Nat Protoc 15:2785–2787

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John R. James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fuyal, M., James, J.R. (2024). Controlling the Potency of T Cell Activation Using an Optically Tunable Chimeric Antigen Receptor. In: Wuelfing, C., Murphy, R.F. (eds) Imaging Cell Signaling. Methods in Molecular Biology, vol 2800. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3834-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3834-7_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3833-0

  • Online ISBN: 978-1-0716-3834-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics