Skip to main content

Reconstructing Signaling Networks Using Biosensor Barcoding

  • Protocol
  • First Online:
Imaging Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2800))

  • 311 Accesses

Abstract

Understanding how signaling networks are regulated offers valuable insights into how cells and organisms react to internal and external stimuli and is crucial for developing novel strategies to treat diseases. To achieve this, it is necessary to delineate the intricate interactions between the nodes in the network, which can be accomplished by measuring the activities of individual nodes under perturbation conditions. To facilitate this, we have recently developed a biosensor barcoding technique that enables massively multiplexed tracking of numerous signaling activities in live cells using genetically encoded fluorescent biosensors. In this chapter, we detail how we employed this method to reconstruct the EGFR signaling network by systematically monitoring the activities of individual nodes under perturbations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Greenwald EC, Mehta S, Zhang J (2018) Genetically encoded fluorescent biosensors illuminate the spatiotemporal regulation of signaling networks. Chem Rev 118:11707–11794. https://doi.org/10.1021/acs.chemrev.8b00333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Terai T, Campbell RE (2022) Barcodes, co-cultures, and deep learning take genetically encoded biosensor multiplexing to the nth degree. Mol Cell 82:239–240. https://doi.org/10.1016/j.molcel.2021.12.017

    Article  CAS  PubMed  Google Scholar 

  3. Yang J-M, Chi W-Y, Liang J et al (2021) Deciphering cell signaling networks with massively multiplexed biosensor barcoding. Cell 184:6193–6206.e14. https://doi.org/10.1016/j.cell.2021.11.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Chi W-Y, Au G, Liang J et al (2022) Imaging and analysis for simultaneous tracking of fluorescent biosensors in barcoded cells. STAR Protoc 3:101611. https://doi.org/10.1016/j.xpro.2022.101611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Komatsu N, Aoki K, Yamada M et al (2011) Development of an optimized backbone of FRET biosensors for kinases and GTPases. Mol Biol Cell 22:4647–4656. https://doi.org/10.1091/mbc.E11-01-0072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Fritz RD, Letzelter M, Reimann A et al (2013) A versatile toolkit to produce sensitive FRET biosensors to visualize signaling in time and space. Sci Signal 6:rs12. https://doi.org/10.1126/scisignal.2004135

    Article  CAS  PubMed  Google Scholar 

  7. Seong J, Ouyang M, Kim T et al (2011) Detection of focal adhesion kinase activation at membrane microdomains by fluorescence resonance energy transfer. Nat Commun 2:406. https://doi.org/10.1038/ncomms1414

    Article  CAS  PubMed  Google Scholar 

  8. Xiang X, Sun J, Wu J et al (2011) A FRET-based biosensor for imaging SYK activities in living cells. Cell Mol Bioeng 4:670–677. https://doi.org/10.1007/s12195-011-0211-x

    Article  CAS  PubMed  Google Scholar 

  9. Várnai P, Balla T (1998) Visualization of phosphoinositides that bind pleckstrin homology domains: calcium- and agonist-induced dynamic changes and relationship to myo-[3H]inositol-labeled phosphoinositide pools. J Cell Biol 143:501–510. https://doi.org/10.1083/jcb.143.2.501

    Article  PubMed  PubMed Central  Google Scholar 

  10. Harvey CD, Ehrhardt AG, Cellurale C et al (2008) A genetically encoded fluorescent sensor of ERK activity. Proc Natl Acad Sci USA 105:19264–19269. https://doi.org/10.1073/pnas.0804598105

    Article  PubMed  PubMed Central  Google Scholar 

  11. Chen T-W, Wardill TJ, Sun Y et al (2013) Ultrasensitive fluorescent proteins for imaging neuronal activity. Nature 499:295–300. https://doi.org/10.1038/nature12354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Li C, Imanishi A, Komatsu N et al (2017) A FRET biosensor for ROCK based on a consensus substrate sequence identified by KISS technology. Cell Struct Funct 42:1–13. https://doi.org/10.1247/csf.16016

    Article  PubMed  Google Scholar 

  13. Ouyang M, Sun J, Chien S et al (2008) Determination of hierarchical relationship of Src and Rac at subcellular locations with FRET biosensors. Proc Natl Acad Sci USA 105:14353–14358. https://doi.org/10.1073/pnas.0807537105

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schindelin J, Arganda-Carreras I, Frise E et al (2012) Fiji: an open-source platform for biological-image analysis. Nat Methods 9:676–682. https://doi.org/10.1038/nmeth.2019

    Article  CAS  PubMed  Google Scholar 

  15. Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675. https://doi.org/10.1038/nmeth.2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Chollet F (2018) Keras: the python deep learning library. Astrophysics Source Code Library. Available: https://ui.adsabs.harvard.edu/abs/2018ascl.soft06022C/abstract

    Google Scholar 

  17. Abadi M, Agarwal A, Barham P et al (2016) TensorFlow: large-scale machine learning on heterogeneous distributed systems. arXiv [cs.DC]. Available: http://arxiv.org/abs/1603.04467

Download references

Acknowledgments

The plasmids of PicchuEV, EV-ROCK, and EV-S6K were provided by Michiyuki Matsuda, to whom the authors extend their gratitude. This work was supported by funding from R01GM136711 (to C.H.H.), Cervical Cancer SPORE P50CA098252 Career Development Award (to J.M.Y.) and Pilot Project Award (to C.H.H.), the W. W. Smith Charitable Trust (#C1901, to C.H.H.) and the Sol Goldman Pancreatic Cancer Research Center (to C.H.H.). Additionally, the purchase of the Zeiss LSM 780 confocal microscope was made possible by NIH grants S10OD016374.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jr-Ming Yang or Chuan-Hsiang Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Wang, S., Chi, WY., Au, G., Huang, CC., Yang, JM., Huang, CH. (2024). Reconstructing Signaling Networks Using Biosensor Barcoding. In: Wuelfing, C., Murphy, R.F. (eds) Imaging Cell Signaling. Methods in Molecular Biology, vol 2800. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3834-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3834-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3833-0

  • Online ISBN: 978-1-0716-3834-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics