Skip to main content

A Pipeline for Dynamic Analysis of Mitochondrial Content in Developing T Cells: Bridging the Gap Between High-Throughput Flow Cytometry and Single-Cell Microscopy Analysis

  • Protocol
  • First Online:
Imaging Cell Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2800))

Abstract

Analyzing the dynamics of mitochondrial content in developing T cells is crucial for understanding the metabolic state during T cell development. However, monitoring mitochondrial content in real-time needs a balance of cell viability and image resolution. In this chapter, we present experimental protocols for measuring mitochondrial content in developing T cells using three modalities: bulk analysis via flow cytometry, volumetric imaging in laser scanning confocal microscopy, and dynamic live-cell monitoring in spinning disc confocal microscopy. Next, we provide an image segmentation and centroid tracking-based analysis pipeline for automated quantification of a large number of microscopy images. These protocols together offer comprehensive approaches to investigate mitochondrial dynamics in developing T cells, enabling a deeper understanding of their metabolic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Afroz SF, Condon ND, Sweet MJ, Kapetanovic R (2022) Quantifying regulated mitochondrial fission in macrophages. Methods Mol Biol 2523:281–301. https://doi.org/10.1007/978-1-0716-2449-4_18

    Article  CAS  PubMed  Google Scholar 

  2. Piconese S, Campello S, Natalini A (2020) Recirculation and residency of T cells and Tregs: lessons learnt in Anacapri. Front Immunol 11. https://doi.org/10.3389/fimmu.2020.00682

  3. Shyer JA, Flavell RA, Bailis W (2020) Metabolic signaling in T cells. Cell Res 30(8):649–659. https://doi.org/10.1038/s41422-020-0379-5

    Article  PubMed  PubMed Central  Google Scholar 

  4. Sun V, Sharpley M, Kaczor-Urbanowicz KE et al (2021) The metabolic landscape of Thymic T cell development in vivo and in vitro. Front Immunol 12. https://doi.org/10.3389/fimmu.2021.716661

  5. Zhang M, Lin X, Yang Z et al (2022) Metabolic regulation of T cell development. Front Immunol 13. https://doi.org/10.3389/fimmu.2022.946119

  6. Corrado M, Samardžić D, Giacomello M et al (2021) Deletion of the mitochondria-shaping protein Opa1 during early thymocyte maturation impacts mature memory T cell metabolism. Cell Death Differ 28(7):2194–2206. https://doi.org/10.1038/s41418-021-00747-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Chann AS, Russell SM (2019) An integrated transcriptional switch at the β-selection checkpoint determines T cell survival, development and leukaemogenesis. Biochem Soc Trans 47(4):1077–1089. https://doi.org/10.1042/bst20180414

    Article  CAS  PubMed  Google Scholar 

  8. Charnley M, Russell SM (2017) Imaging asymmetric T cell division. In: Baldari CT, Dustin ML (eds) The immune synapse: methods and protocols. Springer, New York, pp 383–398. https://doi.org/10.1007/978-1-4939-6881-7_23

    Chapter  Google Scholar 

  9. Cox G (2002) Biological confocal microscopy. Mater Today 5(3):34–41. https://doi.org/10.1016/S1369-7021(02)05329-4

    Article  Google Scholar 

  10. Elliott AD (2020) Confocal microscopy: principles and modern practices. Curr Protoc Cytom 92(1):e68. https://doi.org/10.1002/cpcy.68

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jonkman J, Brown CM (2015) Any way you slice it-a comparison of confocal microscopy techniques. J Biomol Tech 26(2):54–65. https://doi.org/10.7171/jbt.15-2602-003

    Article  PubMed  PubMed Central  Google Scholar 

  12. DeCamp SJ, Tsuda VMK, Ferruzzi J et al (2020) Epithelial layer unjamming shifts energy metabolism toward glycolysis. Sci Rep 10(1):18302. https://doi.org/10.1038/s41598-020-74992-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Polo M, Alegre F, Moragrega AB et al (2017) Lon protease: a novel mitochondrial matrix protein in the interconnection between drug-induced mitochondrial dysfunction and endoplasmic reticulum stress. Br J Pharmacol 174(23):4409–4429. https://doi.org/10.1111/bph.14045

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Charnley M, Allam AH, Newton LM et al (2023) E-cadherin in developing murine T cells controls spindle alignment and progression through b-selection. Sci Adv 9(3):eade5348. https://doi.org/10.1126/sciadv.ade5348

    Article  PubMed  Google Scholar 

  15. Bishop EL, Gudgeon NH, Mackie GM et al (2022) 1,25-Dihydroxyvitamin D3 suppresses CD4+ T-cell effector functionality by inhibition of glycolysis. Immunology 166(3):299–309. https://doi.org/10.1111/imm.13472

    Article  CAS  PubMed  Google Scholar 

  16. Vaeth M, Maus M, Klein-Hessling S et al (2017) Store-operated Ca(2+) entry controls clonal expansion of T cells through metabolic reprogramming. Immunity 47(4):664–679.e666. https://doi.org/10.1016/j.immuni.2017.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bandyopadhyay SK, Paul TU (2013) Segmentation of brain tumour from MRI image analysis of k-means and dbscan clustering. Int J Res Eng Sci 1(1):48–57

    Google Scholar 

  18. mehdi Cherrat E, Alaoui R, Bouzahir H (2019) Improving of fingerprint segmentation images based on K-means and DBSCAN clustering. Int J Electr Comput Eng (IJECE) 9(4):2425–2432

    Article  Google Scholar 

  19. Akkaya B, Roesler AS, Miozzo P et al (2018) Increased mitochondrial biogenesis and reactive oxygen species production accompany prolonged CD4(+) T cell activation. J Immunol 201(11):3294–3306. https://doi.org/10.4049/jimmunol.1800753

    Article  CAS  PubMed  Google Scholar 

  20. Singh S, Dwarakanath BS, Mathew TL (2004) DNA ligand Hoechst-33342 enhances UV induced cytotoxicity in human glioma cell lines. J Photochem Photobiol B 77(1–3):45–54. https://doi.org/10.1016/j.jphotobiol.2004.08.009

    Article  CAS  PubMed  Google Scholar 

  21. Konjar Å , Frising UC, Ferreira C et al (2018) Mitochondria maintain controlled activation state of epithelial-resident T lymphocytes. Sci Immunol 3(24). https://doi.org/10.1126/sciimmunol.aan2543

  22. Scharping NE, Menk AV, Moreci RS et al (2016) The tumor microenvironment represses T cell mitochondrial biogenesis to drive Intratumoral T cell metabolic insufficiency and dysfunction. Immunity 45(2):374–388. https://doi.org/10.1016/j.immuni.2016.07.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Charnley M, Ludford-Menting M, Pham K, Russell SM (2019) A new role for Notch in the control of polarity and asymmetric cell division of developing T cells. J Cell Sci 133(5). https://doi.org/10.1242/jcs.235358

  24. Day D, Pham K, Ludford-Menting MJ et al (2009) A method for prolonged imaging of motile lymphocytes. Immunol Cell Biol 87(2):154–158. https://doi.org/10.1038/icb.2008.79

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was done on Wurundjeri land of the Kulin nation, and we pay our respects to the Elders past and present. Authors would like to acknowledge BioRender for their graphic design software.

Supporting Information

The supporting information, including additional data, code, and figures, is available on GitHub at https://github.com/VaibhavDhyani/Sample_codes_for_image_segmentation. Please refer to this link for further details.

Funding

National Health and Medical Research Council grant APP1099140 (SMR).

Flow cytometry was supported by a grant for the FACS Aria from the L.E.W Carty Charitable Fund.

CASS Foundation (CASS medicine/science grant number: 7818, MC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sarah M. Russell or Mirren Charnley .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dhyani, V., Chann, A.S., Giri, L., Russell, S.M., Charnley, M. (2024). A Pipeline for Dynamic Analysis of Mitochondrial Content in Developing T Cells: Bridging the Gap Between High-Throughput Flow Cytometry and Single-Cell Microscopy Analysis. In: Wuelfing, C., Murphy, R.F. (eds) Imaging Cell Signaling. Methods in Molecular Biology, vol 2800. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3834-7_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3834-7_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3833-0

  • Online ISBN: 978-1-0716-3834-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics