Skip to main content

Functional Analysis of NMDAR Subunit Components in Postsynaptic Currents of Identified Cells and Synapses in Brain Slices

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 86 Accesses

Abstract

Epilepsy is one of the most represented neurological diseases worldwide. However, in many cases, the precise molecular mechanisms of epileptogenesis and ictiogenesis are unknown. Because of their important role in synaptic function and neuronal excitability, NMDA receptors are implicated in various epileptogenic mechanisms. Most of these are subunit specific and require a precise analysis of the subunit composition of the NMDARs implicated. Here, we describe an express electrophysiological method to analyze the contribution of NMDAR subunits to spontaneous postsynaptic activity in identified cells in brain slices using patch clamp whole cell recordings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Scheffer IE, Berkovic S, Capovilla G et al (2017) ILAE classification of the epilepsies: position paper of the ILAE Commission for Classification and Terminology. Epilepsia 58:512–521. https://doi.org/10.1111/epi.13709

    Article  PubMed  PubMed Central  Google Scholar 

  2. Balestrini S, Arzimanoglou A, Blümcke I et al (2021) The aetiologies of epilepsy. Epileptic Disord 23:1–16. https://doi.org/10.1684/epd.2021.1255

    Article  PubMed  Google Scholar 

  3. Beghi E (2020) The epidemiology of epilepsy. Neuroepidemiology 54:185–191. https://doi.org/10.1159/000503831

    Article  PubMed  Google Scholar 

  4. Becker AJ (2018) Review: animal models of acquired epilepsy: insights into mechanisms of human epileptogenesis. Neuropathol Appl Neurobiol 44:112–129. https://doi.org/10.1111/nan.12451

    Article  CAS  PubMed  Google Scholar 

  5. Oyrer J, Maljevic S, Scheffer IE et al (2018) Ion channels in genetic epilepsy: from genes and mechanisms to disease-targeted therapies. Pharmacol Rev 70:142–173. https://doi.org/10.1124/pr.117.014456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lerche H, Shah M, Beck H et al (2013) Ion channels in genetic and acquired forms of epilepsy. J Physiol 591:753–764. https://doi.org/10.1113/jphysiol.2012.240606

    Article  CAS  PubMed  Google Scholar 

  7. White R, Hua Y, Scheithauer B et al (2001) Selective alterations in glutamate and GABA receptor subunit mRNA expression in dysplastic neurons and giant cells of cortical tubers. Ann Neurol 49:67–78. https://doi.org/10.1002/1531-8249(200101)49:1<67::aid-ana10>3.0.co;2-l

    Article  CAS  PubMed  Google Scholar 

  8. Crino PB, Duhaime AC, Baltuch G, White R (2001) Differential expression of glutamate and GABA-A receptor subunit mRNA in cortical dysplasia. Neurology 56:906–913. https://doi.org/10.1212/wnl.56.7.906

    Article  CAS  PubMed  Google Scholar 

  9. DeFazio RA, Hablitz JJ (2000) Alterations in NMDA receptors in a rat model of cortical dysplasia. J Neurophysiol 83:315–321. https://doi.org/10.1152/jn.2000.83.1.315

    Article  CAS  PubMed  Google Scholar 

  10. Zilles K, Qü M, Schleicher A, Luhmann HJ (1998) Characterization of neuronal migration disorders in neocortical structures: quantitative receptor autoradiography of ionotropic glutamate, GABA(A) and GABA(B) receptors. Eur J Neurosci 10:3095–3106. https://doi.org/10.1046/j.1460-9568.1998.00322.x

    Article  CAS  PubMed  Google Scholar 

  11. Luhmann HJ, Raabe K, Qü M, Zilles K (1998) Characterization of neuronal migration disorders in neocortical structures: extracellular in vitro recordings. Eur J Neurosci 10:3085–3094. https://doi.org/10.1046/j.1460-9568.1998.00311.x

    Article  CAS  PubMed  Google Scholar 

  12. André VM, Flores-Hernández J, Cepeda C et al (2004) NMDA receptor alterations in neurons from pediatric cortical dysplasia tissue. Cereb Cortex 14:634–646. https://doi.org/10.1093/cercor/bhh024

    Article  PubMed  Google Scholar 

  13. Szepetowski P (2018) Genetics of human epilepsies: continuing progress. Presse Med 47:218–226. https://doi.org/10.1016/j.lpm.2017.10.020

    Article  PubMed  Google Scholar 

  14. Sivakumar S, Ghasemi M, Schachter SC (2022) Targeting NMDA receptor complex in management of epilepsy. Pharmaceuticals (Basel) 15:1297. https://doi.org/10.3390/ph15101297

    Article  CAS  PubMed  Google Scholar 

  15. Lozovaya N, Gataullina S, Tsintsadze T et al (2014) Selective suppression of excessive GluN2C expression rescues early epilepsy in a tuberous sclerosis murine model. Nat Commun 5:4563. https://doi.org/10.1038/ncomms5563

    Article  CAS  PubMed  Google Scholar 

  16. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14:383–400. https://doi.org/10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  17. Gupta SC, Ravikrishnan A, Liu J et al (2016) The NMDA receptor GluN2C subunit controls cortical excitatory-inhibitory balance, neuronal oscillations and cognitive function. Sci Rep 6:38321. https://doi.org/10.1038/srep38321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Binshtok AM, Fleidervish IA, Sprengel R, Gutnick MJ (2006) NMDA receptors in layer 4 spiny stellate cells of the mouse barrel cortex contain the NR2C subunit. J Neurosci 26:708–715. https://doi.org/10.1523/JNEUROSCI.4409-05.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Pineau L, Buhler E, Tarhini S et al (2023) Pathogenic MTOR somatic variant causing focal cortical dysplasia drives hyperexcitability via overactivation of neuronal GluN2C NMDA receptors. bioRxiv 2023.12.01.569539. https://doi.org/10.1101/2023.12.01.569539

  20. Gorlewicz A, Pijet B, Orlova K et al (2022) Epileptiform GluN2B-driven excitation in hippocampus as a therapeutic target against temporal lobe epilepsy. Exp Neurol 354:114087. https://doi.org/10.1016/j.expneurol.2022.114087

    Article  CAS  PubMed  Google Scholar 

  21. Staiger JF, Flagmeyer I, Schubert D et al (2004) Functional diversity of layer IV spiny neurons in rat somatosensory cortex: quantitative morphology of electrophysiologically characterized and biocytin labeled cells. Cereb Cortex 14:690–701. https://doi.org/10.1093/cercor/bhh029

    Article  PubMed  Google Scholar 

  22. Golowasch J, Thomas G, Taylor AL et al (2009) Membrane capacitance measurements revisited: dependence of capacitance value on measurement method in nonisopotential neurons. J Neurophysiol 102:2161–2175. https://doi.org/10.1152/jn.00160.2009

    Article  PubMed  PubMed Central  Google Scholar 

  23. Shen K-F, Duan Q-T, Duan W et al (2022) Vascular endothelial growth factor-C modulates cortical NMDA receptor activity in cortical lesions of young patients and rat model with focal cortical dysplasia. Brain Pathol 32:e13065. https://doi.org/10.1111/bpa.13065

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nail Burnashev .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pineau, L., Burnashev, N. (2024). Functional Analysis of NMDAR Subunit Components in Postsynaptic Currents of Identified Cells and Synapses in Brain Slices. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics