Skip to main content

Selective Cell-Surface Expression of Triheteromeric NMDA Receptors

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 99 Accesses

Abstract

NMDA-type ionotropic glutamate receptors are critically involved in many brain functions and are implicated in a variety of brain disorders. Seven NMDA receptor subunits exist (GluN1, GluN2A-D, and GluN3A-B) that assemble into tetrameric receptor subtypes with distinct functional properties and physiological roles. The majority NMDA receptors are composed of two GluN1 and two GluN2 subunits, which can assemble into four diheteromeric receptors subtypes composed of GluN1 and one type of GluN2 subunit (e.g., GluN1/2A), and presumably also six triheteromeric receptor subtypes composed of GluN1 and two different GluN2 subunits (e.g., GluN1/2A/2B). Furthermore, the GluN1 subunit exists as eight splice variants (e.g., GluN1-1a and GluN1-1b isoforms), and two different GluN1 isoforms can co-assemble to also form triheteromeric NMDA receptors (e.g., GluN1-1a/1b/2A). Here, we describe a method to faithfully express triheteromeric NMDA receptors in heterologous expression systems by controlling the identity of two of the four subunits. This method overcomes the problem that co-expression of three different NMDA receptor subunits generates two distinct diheteromeric receptor subtypes as well as one triheteromeric receptor subtype, thereby confounding studies that require a homogenous population of triheteromeric NMDA receptors. The method has been applied to selectively express recombinant triheteromeric GluN1/2A/2B, GluN1/2A/2C, GluN1/2B/2D, GluN1-1a/GluN1-1b/2A, GluN1-1a/GluN1-1b/2B receptors with negligible co-expression of the respective diheteromeric receptor subtypes. This method therefore enables quantitative evaluation of functional and pharmacological properties of triheteromeric NMDA receptors, some of which are abundant NMDA receptor subtypes in the adult brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hansen KB, Wollmuth LP, Bowie D, Furukawa H, Menniti FS, Sobolevsky AI, Swanson GT, Swanger SA, Greger IH, Nakagawa T, McBain CJ, Jayaraman V, Low CM, Dell’Acqua ML, Diamond JS, Camp CR, Perszyk RE, Yuan H, Traynelis SF (2021) Structure, function, and pharmacology of glutamate receptor ion channels. Pharmacol Rev 73(4):298–487

    Article  PubMed  PubMed Central  Google Scholar 

  2. Hansen KB, Yi F, Perszyk RE, Furukawa H, Wollmuth LP, Gibb AJ, Traynelis SF (2018) Structure, function, and allosteric modulation of NMDA receptors. J Gen Physiol 150(8):1081–1105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Hollmann M, Boulter J, Maron C, Beasley L, Sullivan J, Pecht G, Heinemann S (1993) Zinc potentiates agonist-induced currents at certain splice variants of the NMDA receptor. Neuron 10(5):943–954

    Article  CAS  PubMed  Google Scholar 

  4. Durand GM, Gregor P, Zheng X, Bennett MV, Uhl GR, Zukin RS (1992) Cloning of an apparent splice variant of the rat N-methyl-D-aspartate receptor NMDAR1 with altered sensitivity to polyamines and activators of protein kinase C. Proc Natl Acad Sci USA 89(19):9359–9363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Nakanishi N, Axel R, Shneider NA (1992) Alternative splicing generates functionally distinct N-methyl-D-aspartate receptors. Proc Natl Acad Sci USA 89(18):8552–8556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sugihara H, Moriyoshi K, Ishii T, Masu M, Nakanishi S (1992) Structures and properties of seven isoforms of the NMDA receptor generated by alternative splicing. Biochem Biophys Res Commun 185(3):826–832

    Article  CAS  PubMed  Google Scholar 

  7. Monyer H, Burnashev N, Laurie DJ, Sakmann B, Seeburg PH (1994) Developmental and regional expression in the rat brain and functional properties of four NMDA receptors. Neuron 12(3):529–540

    Article  CAS  PubMed  Google Scholar 

  8. Vicini S, Wang JF, Li JH, Zhu WJ, Wang YH, Luo JH, Wolfe BB, Grayson DR (1998) Functional and pharmacological differences between recombinant N-methyl-D-aspartate receptors. J Neurophysiol 79(2):555–566

    Article  CAS  PubMed  Google Scholar 

  9. Akazawa C, Shigemoto R, Bessho Y, Nakanishi S, Mizuno N (1994) Differential expression of five N-methyl-D-aspartate receptor subunit mRNAs in the cerebellum of developing and adult rats. J Comp Neurol 347(1):150–160

    Article  CAS  PubMed  Google Scholar 

  10. Monyer H, Sprengel R, Schoepfer R, Herb A, Higuchi M, Lomeli H, Burnashev N, Sakmann B, Seeburg PH (1992) Heteromeric NMDA receptors: molecular and functional distinction of subtypes. Science 256(5060):1217–1221

    Article  CAS  PubMed  Google Scholar 

  11. Ishii T, Moriyoshi K, Sugihara H, Sakurada K, Kadotani H, Yokoi M, Akazawa C, Shigemoto R, Mizuno N, Masu M et al (1993) Molecular characterization of the family of the N-methyl-D-aspartate receptor subunits. J Biol Chem 268(4):2836–2843

    Article  CAS  PubMed  Google Scholar 

  12. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Crawley O, Conde-Dusman MJ, Perez-Otano I (2022) GluN3A NMDA receptor subunits: more enigmatic than ever? J Physiol 600(2):261–276

    Article  CAS  PubMed  Google Scholar 

  15. Bossi S, Pizzamiglio L, Paoletti P (2023) Excitatory GluN1/GluN3A glycine receptors (eGlyRs) in brain signaling. Trends Neurosci 46(8):667–681

    Article  CAS  PubMed  Google Scholar 

  16. Al-Hallaq RA, Conrads TP, Veenstra TD, Wenthold RJ (2007) NMDA di-heteromeric receptor populations and associated proteins in rat hippocampus. J Neurosci 27(31):8334–8343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Rauner C, Kohr G (2011) Triheteromeric NR1/NR2A/NR2B receptors constitute the major N-methyl-D-aspartate receptor population in adult hippocampal synapses. J Biol Chem 286(9):7558–7566

    Article  CAS  PubMed  Google Scholar 

  18. Tovar KR, McGinley MJ, Westbrook GL (2013) Triheteromeric NMDA receptors at hippocampal synapses. J Neurosci 33(21):9150–9160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Luo J, Wang Y, Yasuda RP, Dunah AW, Wolfe BB (1997) The majority of N-methyl-D-aspartate receptor complexes in adult rat cerebral cortex contain at least three different subunits (NR1/NR2A/NR2B). Mol Pharmacol 51(1):79–86

    Article  CAS  PubMed  Google Scholar 

  20. Sheng M, Cummings J, Roldan LA, Jan YN, Jan LY (1994) Changing subunit composition of heteromeric NMDA receptors during development of rat cortex. Nature 368(6467):144–147

    Article  CAS  PubMed  Google Scholar 

  21. Yi F, Rouzbeh N, Hansen KB, Xu Y, Fanger CM, Gordon E, Paschetto K, Menniti FS, Volkmann RA (2020) PTC-174, a positive allosteric modulator of NMDA receptors containing GluN2C or GluN2D subunits. Neuropharmacology 173:107971

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Perszyk RE, DiRaddo JO, Strong KL, Low CM, Ogden KK, Khatri A, Vargish GA, Pelkey KA, Tricoire L, Liotta DC, Smith Y, McBain CJ, Traynelis SF (2016) GluN2D-containing N-methyl-d-aspartate receptors mediate synaptic transmission in hippocampal interneurons and regulate interneuron activity. Mol Pharmacol 90(6):689–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Yi F, Bhattacharya S, Thompson CM, Traynelis SF, Hansen KB (2019) Functional and pharmacological properties of triheteromeric GluN1/2B/2D NMDA receptors. J Physiol 597(22):5495–5514

    Article  CAS  PubMed  Google Scholar 

  24. Booker SA, Sumera A, Kind PC, Wyllie DJA (2021) Contribution of NMDA receptors to synaptic function in rat hippocampal interneurons. eNeuro 8(4):ENEURO.0552-20.2021

    Article  PubMed  PubMed Central  Google Scholar 

  25. Swanger SA, Vance KM, Pare JF, Sotty F, Fog K, Smith Y, Traynelis SF (2015) NMDA receptors containing the GluN2D subunit control neuronal function in the subthalamic nucleus. J Neurosci 35(48):15971–15983

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Brickley SG, Misra C, Mok MH, Mishina M, Cull-Candy SG (2003) NR2B and NR2D subunits coassemble in cerebellar Golgi cells to form a distinct NMDA receptor subtype restricted to extrasynaptic sites. J Neurosci 23(12):4958–4966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pina-Crespo JC, Gibb AJ (2002) Subtypes of NMDA receptors in new-born rat hippocampal granule cells. J Physiol 541(Pt 1):41–64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Jones S, Gibb AJ (2005) Functional NR2B- and NR2D-containing NMDA receptor channels in rat substantia nigra dopaminergic neurones. J Physiol 569(Pt 1):209–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Chazot PL, Coleman SK, Cik M, Stephenson FA (1994) Molecular characterization of N-methyl-D-aspartate receptors expressed in mammalian cells yields evidence for the coexistence of three subunit types within a discrete receptor molecule. J Biol Chem 269(39):24403–24409

    Article  CAS  PubMed  Google Scholar 

  30. Cathala L, Misra C, Cull-Candy S (2000) Developmental profile of the changing properties of NMDA receptors at cerebellar mossy fiber-granule cell synapses. J Neurosci 20(16):5899–5905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bhattacharya S, Khatri A, Swanger SA, DiRaddo JO, Yi F, Hansen KB, Yuan H, Traynelis SF (2018) Triheteromeric GluN1/GluN2A/GluN2C NMDARs with unique single-channel properties are the dominant receptor population in cerebellar granule cells. Neuron 99(2):315–328 e315

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Laurie DJ, Seeburg PH (1994) Regional and developmental heterogeneity in splicing of the rat brain NMDAR1 mRNA. J Neurosci 14(5 Pt 2):3180–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Paupard MC, Friedman LK, Zukin RS (1997) Developmental regulation and cell-specific expression of N-methyl-D-aspartate receptor splice variants in rat hippocampus. Neuroscience 79(2):399–409

    Article  CAS  PubMed  Google Scholar 

  34. Zhong J, Carrozza DP, Williams K, Pritchett DB, Molinoff PB (1995) Expression of mRNAs encoding subunits of the NMDA receptor in developing rat brain. J Neurochem 64(2):531–539

    Article  CAS  PubMed  Google Scholar 

  35. Standaert DG, Testa CM, Penney JB Jr, Young AB (1993) Alternatively spliced isoforms of the NMDAR1 glutamate receptor subunit: differential expression in the basal ganglia of the rat. Neurosci Lett 152(1–2):161–164

    Article  CAS  PubMed  Google Scholar 

  36. Prybylowski K, Rumbaugh G, Wolfe BB, Vicini S (2000) Increased exon 5 expression alters extrasynaptic NMDA receptors in cerebellar neurons. J Neurochem 75(3):1140–1146

    Article  CAS  PubMed  Google Scholar 

  37. Karlsson U, Sjodin J, Angeby Moller K, Johansson S, Wikstrom L, Nasstrom J (2002) Glutamate-induced currents reveal three functionally distinct NMDA receptor populations in rat dorsal horn – effects of peripheral nerve lesion and inflammation. Neuroscience 112(4):861–868

    Article  CAS  PubMed  Google Scholar 

  38. Paarmann I, Frermann D, Keller BU, Villmann C, Breitinger HG, Hollmann M (2005) Kinetics and subunit composition of NMDA receptors in respiratory-related neurons. J Neurochem 93(4):812–824

    Article  CAS  PubMed  Google Scholar 

  39. Traynelis SF, Burgess MF, Zheng F, Lyuboslavsky P, Powers JL (1998) Control of voltage-independent zinc inhibition of NMDA receptors by the NR1 subunit. J Neurosci 18(16):6163–6175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Traynelis SF, Hartley M, Heinemann SF (1995) Control of proton sensitivity of the NMDA receptor by RNA splicing and polyamines. Science 268(5212):873–876

    Article  CAS  PubMed  Google Scholar 

  41. Rumbaugh G, Prybylowski K, Wang JF, Vicini S (2000) Exon 5 and spermine regulate deactivation of NMDA receptor subtypes. J Neurophysiol 83(3):1300–1306

    Article  CAS  PubMed  Google Scholar 

  42. Vance KM, Hansen KB, Traynelis SF (2012) GluN1 splice variant control of GluN1/GluN2D NMDA receptors. J Physiol 590(16):3857–3875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Mott DD, Doherty JJ, Zhang S, Washburn MS, Fendley MJ, Lyuboslavsky P, Traynelis SF, Dingledine R (1998) Phenylethanolamines inhibit NMDA receptors by enhancing proton inhibition. Nat Neurosci 1(8):659–667

    Article  CAS  PubMed  Google Scholar 

  44. Pahk AJ, Williams K (1997) Influence of extracellular pH on inhibition by ifenprodil at N-methyl-D-aspartate receptors in Xenopus oocytes. Neurosci Lett 225(1):29–32

    Article  CAS  PubMed  Google Scholar 

  45. Durand GM, Bennett MV, Zukin RS (1993) Splice variants of the N-methyl-D-aspartate receptor NR1 identify domains involved in regulation by polyamines and protein kinase C. Proc Natl Acad Sci USA 90(14):6731–6735

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhang L, Zheng X, Paupard MC, Wang AP, Santchi L, Friedman LK, Zukin RS, Bennett MV (1994) Spermine potentiation of recombinant N-methyl-D-aspartate receptors is affected by subunit composition. Proc Natl Acad Sci USA 91(23):10883–10887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Yi F, Zachariassen LG, Dorsett KN, Hansen KB (2018) Properties of triheteromeric N-methyl-d-aspartate receptors containing two distinct GluN1 isoforms. Mol Pharmacol 93(5):453–467

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Hansen KB, Ogden KK, Yuan H, Traynelis SF (2014) Distinct functional and pharmacological properties of Triheteromeric GluN1/GluN2A/GluN2B NMDA receptors. Neuron 81(5):1084–1096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Kniazeff J, Bessis AS, Maurel D, Ansanay H, Prezeau L, Pin JP (2004) Closed state of both binding domains of homodimeric mGlu receptors is required for full activity. Nat Struct Mol Biol 11(8):706–713

    Article  CAS  PubMed  Google Scholar 

  50. Bettler B, Kaupmann K, Mosbacher J, Gassmann M (2004) Molecular structure and physiological functions of GABA(B) receptors. Physiol Rev 84(3):835–867

    Article  CAS  PubMed  Google Scholar 

  51. Margeta-Mitrovic M, Jan YN, Jan LY (2000) A trafficking checkpoint controls GABA(B) receptor heterodimerization. Neuron 27(1):97–106

    Article  CAS  PubMed  Google Scholar 

  52. Kammerer RA, Frank S, Schulthess T, Landwehr R, Lustig A, Engel J (1999) Heterodimerization of a functional GABAB receptor is mediated by parallel coiled-coil alpha-helices. Biochemistry 38(40):13263–13269

    Article  CAS  PubMed  Google Scholar 

  53. Burmakina S, Geng Y, Chen Y, Fan QR (2014) Heterodimeric coiled-coil interactions of human GABAB receptor. Proc Natl Acad Sci USA 111(19):6958–6963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zerangue N, Malan MJ, Fried SR, Dazin PF, Jan YN, Jan LY, Schwappach B (2001) Analysis of endoplasmic reticulum trafficking signals by combinatorial screening in mammalian cells. Proc Natl Acad Sci USA 98(5):2431–2436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Brock C, Boudier L, Maurel D, Blahos J, Pin JP (2005) Assembly-dependent surface targeting of the heterodimeric GABAB receptor is controlled by COPI but not 14-3-3. Mol Biol Cell 16(12):5572–5578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Arai R, Wriggers W, Nishikawa Y, Nagamune T, Fujisawa T (2004) Conformations of variably linked chimeric proteins evaluated by synchrotron X-ray small-angle scattering. Proteins 57(4):829–838

    Article  CAS  PubMed  Google Scholar 

  57. Benveniste M, Mayer ML (1991) Kinetic analysis of antagonist action at N-methyl-D-aspartic acid receptors. Two binding sites each for glutamate and glycine. Biophys J 59(3):560–573

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7(4):605–613

    Article  CAS  PubMed  Google Scholar 

  59. Kvist T, Greenwood JR, Hansen KB, Traynelis SF, Brauner-Osborne H (2013) Structure-based discovery of antagonists for GluN3-containing N-methyl-D-aspartate receptors. Neuropharmacology 75:324–336

    Article  CAS  PubMed  Google Scholar 

  60. Stroebel D, Carvalho S, Grand T, Zhu S, Paoletti P (2014) Controlling NMDA receptor subunit composition using ectopic retention signals. J Neurosci 34(50):16630–16636

    Article  PubMed  PubMed Central  Google Scholar 

  61. Cheriyan J, Balsara RD, Hansen KB, Castellino FJ (2016) Pharmacology of triheteromeric N-methyl-D-aspartate receptors. Neurosci Lett 617:240–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Hackos DH, Lupardus PJ, Grand T, Chen Y, Wang TM, Reynen P, Gustafson A, Wallweber HJ, Volgraf M, Sellers BD, Schwarz JB, Paoletti P, Sheng M, Zhou Q, Hanson JE (2016) Positive allosteric modulators of GluN2A-containing NMDARs with distinct modes of action and impacts on circuit function. Neuron 89(5):983–999

    Article  CAS  PubMed  Google Scholar 

  63. Yi F, Mou TC, Dorsett KN, Volkmann RA, Menniti FS, Sprang SR, Hansen KB (2016) Structural basis for negative allosteric modulation of GluN2A-containing NMDA receptors. Neuron 91(6):1316–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lind GE, Mou TC, Tamborini L, Pomper MG, De Micheli C, Conti P, Pinto A, Hansen KB (2017) Structural basis of subunit selectivity for competitive NMDA receptor antagonists with preference for GluN2A over GluN2B subunits. Proc Natl Acad Sci USA 114(33):E6942–E6951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Khatri A, Burger PB, Swanger SA, Hansen KB, Zimmerman S, Karakas E, Liotta DC, Furukawa H, Snyder JP, Traynelis SF (2014) Structural determinants and mechanism of action of a GluN2C-selective NMDA receptor positive allosteric modulator. Mol Pharmacol 86(5):548–560

    Article  PubMed  PubMed Central  Google Scholar 

  66. Strong KL, Epplin MP, Ogden KK, Burger PB, Kaiser TM, Wilding TJ, Kusumoto H, Camp CR, Shaulsky G, Bhattacharya S, Perszyk RE, Menaldino DS, McDaniel MJ, Zhang J, Le P, Banke TG, Hansen KB, Huettner JE, Liotta DC, Traynelis SF (2021) Distinct GluN1 and GluN2 structural determinants for subunit-selective positive allosteric modulation of N-methyl-d-aspartate receptors. ACS Chem Neurosci 12(1):79–98

    Article  CAS  PubMed  Google Scholar 

  67. Sun W, Hansen KB, Jahr CE (2017) Allosteric interactions between NMDA receptor subunits shape the developmental shift in channel properties. Neuron 94(1):58–64 e53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Fu H, Tang W, Chen Z, Belov VV, Zhang G, Shao T, Zhang X, Yu Q, Rong J, Deng X, Han W, Myers SJ, Giffenig P, Wang L, Josephson L, Shao Y, Davenport AT, Daunais JB, Papisov M, Yuan H, Li Z, Traynelis SF, Liang SH (2019) Synthesis and preliminary evaluations of a triazole-cored antagonist as a PET imaging probe ([(18)F]N2B-0518) for GluN2B subunit in the brain. ACS Chem Neurosci 10(5):2263–2275

    Article  CAS  PubMed  Google Scholar 

  69. Gibb AJ, Ogden KK, McDaniel MJ, Vance KM, Kell SA, Butch C, Burger P, Liotta DC, Traynelis SF (2018) A structurally derived model of subunit-dependent NMDA receptor function. J Physiol 596(17):4057–4089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yuan H, Hansen KB, Zhang J, Pierson TM, Markello TC, Fajardo KV, Holloman CM, Golas G, Adams DR, Boerkoel CF, Gahl WA, Traynelis SF (2014) Functional analysis of a de novo GRIN2A missense mutation associated with early-onset epileptic encephalopathy. Nat Commun 5:3251

    Article  PubMed  Google Scholar 

  71. Elmasri M, Lotti JS, Aziz W, Steele OG, Karachaliou E, Sakimura K, Hansen KB, Penn AC (2022) Synaptic dysfunction by mutations in GRIN2B: influence of triheteromeric NMDA receptors on gain-of-function and loss-of-function mutant classification. Brain Sci 12(6):789

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Marwick KFM, Hansen KB, Skehel PA, Hardingham GE, Wyllie DJA (2019) Functional assessment of triheteromeric NMDA receptors containing a human variant associated with epilepsy. J Physiol 597(6):1691–1704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Li J, Zhang J, Tang W, Mizu RK, Kusumoto H, XiangWei W, Xu Y, Chen W, Amin JB, Hu C, Kannan V, Keller SR, Wilcox WR, Lemke JR, Myers SJ, Swanger SA, Wollmuth LP, Petrovski S, Traynelis SF, Yuan H (2019) De novo GRIN variants in NMDA receptor M2 channel pore-forming loop are associated with neurological diseases. Hum Mutat 40(12):2393–2413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Han W, Yuan H, Allen JP, Kim S, Shaulsky GH, Perszyk RE, Traynelis SF, Myers SJ (2022) Opportunities for precision treatment of GRIN2A and GRIN2B gain-of-function variants in triheteromeric N-methyl-D-aspartate receptors. J Pharmacol Exp Ther 381(1):54–66

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Amador A, Bostick CD, Olson H, Peters J, Camp CR, Krizay D, Chen W, Han W, Tang W, Kanber A, Kim S, Teoh J, Sah M, Petri S, Paek H, Kim A, Lutz CM, Yang M, Myers SJ, Bhattacharya S, Yuan H, Goldstein DB, Poduri A, Boland MJ, Traynelis SF, Frankel WN (2020) Modelling and treating GRIN2A developmental and epileptic encephalopathy in mice. Brain 143(7):2039–2057

    Article  PubMed  PubMed Central  Google Scholar 

  76. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF (2009) Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci 29(39):12045–12058

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Maki BA, Aman TK, Amico-Ruvio SA, Kussius CL, Popescu GK (2012) C-terminal domains of N-methyl-D-aspartic acid receptor modulate unitary channel conductance and gating. J Biol Chem 287(43):36071–36080

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Punnakkal P, Jendritza P, Kohr G (2012) Influence of the intracellular GluN2 C-terminal domain on NMDA receptor function. Neuropharmacology 62(5–6):1985–1992

    Article  CAS  PubMed  Google Scholar 

  79. Kenny AV, Cousins SL, Pinho L, Stephenson FA (2009) The integrity of the glycine co-agonist binding site of N-methyl-D-aspartate receptors is a functional quality control checkpoint for cell surface delivery. J Biol Chem 284(1):324–333

    Article  CAS  PubMed  Google Scholar 

  80. She K, Ferreira JS, Carvalho AL, Craig AM (2012) Glutamate binding to the GluN2B subunit controls surface trafficking of N-methyl-D-aspartate (NMDA) receptors. J Biol Chem 287(33):27432–27445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Swanger SA, Chen W, Wells G, Burger PB, Tankovic A, Bhattacharya S, Strong KL, Hu C, Kusumoto H, Zhang J, Adams DR, Millichap JJ, Petrovski S, Traynelis SF, Yuan H (2016) Mechanistic insight into NMDA receptor dysregulation by rare variants in the GluN2A and GluN2B agonist binding domains. Am J Hum Genet 99(6):1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Benske TM, Mu TW, Wang YJ (2022) Protein quality control of N-methyl-D-aspartate receptors. Front Cell Neurosci 16:907560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Hatton CJ, Paoletti P (2005) Modulation of triheteromeric NMDA receptors by N-terminal domain ligands. Neuron 46(2):261–274

    Article  CAS  PubMed  Google Scholar 

  84. Bossi E, Fabbrini MS, Ceriotti A (2007) Exogenous protein expression in Xenopus oocytes: basic procedures. Methods Mol Biol 375:107–131

    CAS  PubMed  Google Scholar 

  85. Stuhmer W (1998) Electrophysiologic recordings from Xenopus oocytes. Methods Enzymol 293:280–300

    Article  CAS  PubMed  Google Scholar 

  86. Goldin AL (1992) Maintenance of Xenopus laevis and oocyte injection. Methods Enzymol 207:266–279

    Article  CAS  PubMed  Google Scholar 

  87. Goldin AL, Sumikawa K (1992) Preparation of Rna for injection into Xenopus oocytes. Methods Enzymol 207:279–297

    Article  CAS  PubMed  Google Scholar 

  88. Matten WT, Vandewoude GF (1995) Microinjection into Xenopus oocytes. Oncogene Tech 254:458–466

    Article  CAS  Google Scholar 

  89. Leonard JP, Kelso SR (1990) Apparent desensitization of NMDA responses in Xenopus oocytes involves calcium-dependent chloride current. Neuron 4(1):53–60

    Article  CAS  PubMed  Google Scholar 

  90. Moriyoshi K, Masu M, Ishii T, Shigemoto R, Mizuno N, Nakanishi S (1991) Molecular cloning and characterization of the rat NMDA receptor. Nature 354(6348):31–37

    Article  CAS  PubMed  Google Scholar 

  91. Liman ER, Tytgat J, Hess P (1992) Subunit stoichiometry of a mammalian K+ channel determined by construction of multimeric cDNAs. Neuron 9(5):861–871

    Article  CAS  PubMed  Google Scholar 

  92. Jespersen T, Grunnet M, Angelo K, Klaerke DA, Olesen SP (2002) Dual-function vector for protein expression in both mammalian cells and Xenopus laevis oocytes. BioTechniques 32(3):536–538, 540

    Article  CAS  PubMed  Google Scholar 

  93. Williams K (1993) Ifenprodil discriminates subtypes of the N-methyl-D-aspartate receptor: selectivity and mechanisms at recombinant heteromeric receptors. Mol Pharmacol 44(4):851–859

    CAS  PubMed  Google Scholar 

  94. Logan SM, Rivera FE, Leonard JP (1999) Protein kinase C modulation of recombinant NMDA receptor currents: roles for the C-terminal C1 exon and calcium ions. J Neurosci 19(3):974–986

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Zheng X, Zhang L, Wang AP, Bennett MV, Zukin RS (1997) Ca2+ influx amplifies protein kinase C potentiation of recombinant NMDA receptors. J Neurosci 17(22):8676–8686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Terhag J, Cavara NA, Hollmann M (2010) Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes. Methods 51(1):66–74

    Article  CAS  PubMed  Google Scholar 

  97. Schmidt C, Hollmann M (2009) Molecular and functional characterization of Xenopus laevis N-methyl-d-aspartate receptors. Mol Cell Neurosci 42(2):116–127

    Article  CAS  PubMed  Google Scholar 

  98. Schmidt C, Klein C, Hollmann M (2009) Xenopus laevis oocytes endogenously express all subunits of the ionotropic glutamate receptor family. J Mol Biol 390(2):182–195

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Institutes of Health (R01NS116055, R01NS097536, R35NS111619, and P30GM140963).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kasper B. Hansen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Yi, F., Traynelis, S.F., Hansen, K.B. (2024). Selective Cell-Surface Expression of Triheteromeric NMDA Receptors. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics