Skip to main content

Modeling and Simulation of the NMDA Receptor at Coarse-Grained and Atomistic Levels

  • Protocol
  • First Online:
NMDA Receptors

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2799))

  • 113 Accesses

Abstract

N-Methyl-D-aspartate (NMDA) receptors are glutamate-gated excitatory channels that play essential roles in brain functions. While high-resolution structures were solved for an allosterically inhibited form of functional NMDA receptor, other key functional states (particularly the active open-channel state) have not yet been resolved at atomic resolutions. To decrypt the molecular mechanism of the NMDA receptor activation, structural modeling and simulation are instrumental in providing detailed information about the dynamics and energetics of the receptor in various functional states. In this chapter, we describe coarse-grained modeling of the NMDA receptor using an elastic network model and related modeling/analysis tools (e.g., normal mode analysis, flexibility and hotspot analysis, cryo-EM flexible fitting, and transition pathway modeling) based on available structures. Additionally, we show how to build an atomistic model of the active-state receptor with targeted molecular dynamics (MD) simulation and explore its energetics and dynamics with conventional MD simulation. Taken together, these modeling and simulation can offer rich structural and dynamic information which will guide experimental studies of the activation of this key receptor.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Benveniste M, Mayer ML (1991) Structure-activity analysis of binding kinetics for NMDA receptor competitive antagonists: the influence of conformational restriction. Br J Pharmacol 104(1):207–221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Johnson JW, Ascher P (1987) Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature 325(6104):529–531. https://doi.org/10.1038/325529a0

    Article  CAS  PubMed  Google Scholar 

  3. Clements JD, Westbrook GL (1991) Activation kinetics reveal the number of glutamate and glycine binding sites on the N-methyl-D-aspartate receptor. Neuron 7(4):605–613

    Article  CAS  PubMed  Google Scholar 

  4. Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg2+ of NMDA responses in spinal cord neurones. Nature 309(5965):261–263

    Article  CAS  PubMed  Google Scholar 

  5. Nowak L, Bregestovski P, Ascher P, Herbet A, Prochiantz A (1984) Magnesium gates glutamate-activated channels in mouse central neurones. Nature 307(5950):462–465

    Article  CAS  PubMed  Google Scholar 

  6. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. https://doi.org/10.1038/nrn3504

    Article  CAS  PubMed  Google Scholar 

  7. Zhu S, Paoletti P (2015) Allosteric modulators of NMDA receptors: multiple sites and mechanisms. Curr Opin Pharmacol 20:14–23. https://doi.org/10.1016/j.coph.2014.10.009

    Article  CAS  PubMed  Google Scholar 

  8. Hansen KB, Furukawa H, Traynelis SF (2010) Control of assembly and function of glutamate receptors by the amino-terminal domain. Mol Pharmacol 78(4):535–549. https://doi.org/10.1124/mol.110.067157

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yuan H, Hansen KB, Vance KM, Ogden KK, Traynelis SF (2009) Control of NMDA receptor function by the NR2 subunit amino-terminal domain. J Neurosci Off J Soc Neurosci 29(39):12045–12058. https://doi.org/10.1523/JNEUROSCI.1365-09.2009

    Article  CAS  Google Scholar 

  10. Gielen M, Siegler Retchless B, Mony L, Johnson JW, Paoletti P (2009) Mechanism of differential control of NMDA receptor activity by NR2 subunits. Nature 459(7247):703–707. https://doi.org/10.1038/nature07993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Furukawa H, Singh SK, Mancusso R, Gouaux E (2005) Subunit arrangement and function in NMDA receptors. Nature 438(7065):185–192. https://doi.org/10.1038/nature04089

    Article  CAS  PubMed  Google Scholar 

  12. Sobolevsky AI, Beck C, Wollmuth LP (2002) Molecular rearrangements of the extracellular vestibule in NMDAR channels during gating. Neuron 33(1):75–85

    Article  CAS  PubMed  Google Scholar 

  13. Beck C, Wollmuth LP, Seeburg PH, Sakmann B, Kuner T (1999) NMDAR channel segments forming the extracellular vestibule inferred from the accessibility of substituted cysteines. Neuron 22(3):559–570

    Article  CAS  PubMed  Google Scholar 

  14. Karakas E, Furukawa H (2014) Crystal structure of a heterotetrameric NMDA receptor ion channel. Science 344(6187):992–997. https://doi.org/10.1126/science.1251915

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lee CH, Lu W, Michel JC, Goehring A, Du J, Song X, Gouaux E (2014) NMDA receptor structures reveal subunit arrangement and pore architecture. Nature 511(7508):191–197. https://doi.org/10.1038/nature13548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Karakas E, Simorowski N, Furukawa H (2011) Subunit arrangement and phenylethanolamine binding in GluN1/GluN2B NMDA receptors. Nature 475(7355):249–253. https://doi.org/10.1038/nature10180

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Karakas E, Simorowski N, Furukawa H (2009) Structure of the zinc-bound amino-terminal domain of the NMDA receptor NR2B subunit. EMBO J 28(24):3910–3920. https://doi.org/10.1038/emboj.2009.338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zhu S, Stein RA, Yoshioka C, Lee CH, Goehring A, McHaourab HS, Gouaux E (2016) Mechanism of NMDA receptor inhibition and activation. Cell 165(3):704–714. https://doi.org/10.1016/j.cell.2016.03.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Tajima N, Karakas E, Grant T, Simorowski N, Diaz-Avalos R, Grigorieff N, Furukawa H (2016) Activation of NMDA receptors and the mechanism of inhibition by ifenprodil. Nature 534(7605):63–68. https://doi.org/10.1038/nature17679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Karplus M, McCammon JA (2002) Molecular dynamics simulations of biomolecules. Nat Struct Biol 9(9):646–652. https://doi.org/10.1038/nsb0902-646

    Article  CAS  PubMed  Google Scholar 

  21. Cooper DR, Dolino DM, Jaurich H, Shuang B, Ramaswamy S, Nurik CE, Chen J, Jayaraman V, Landes CF (2015) Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys J 109(1):66–75. https://doi.org/10.1016/j.bpj.2015.05.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Dolino DM, Cooper D, Ramaswamy S, Jaurich H, Landes CF, Jayaraman V (2015) Structural dynamics of the glycine-binding domain of the N-methyl-D-aspartate receptor. J Biol Chem 290(2):797–804. https://doi.org/10.1074/jbc.M114.605436

    Article  CAS  PubMed  Google Scholar 

  23. Dolino DM, Rezaei Adariani S, Shaikh SA, Jayaraman V, Sanabria H (2016) Conformational selection and submillisecond dynamics of the ligand-binding domain of the N-methyl-d-aspartate receptor. J Biol Chem 291(31):16175–16185. https://doi.org/10.1074/jbc.M116.721274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Sirrieh RE, MacLean DM, Jayaraman V (2015) Subtype-dependent N-methyl-D-aspartate receptor amino-terminal domain conformations and modulation by spermine. J Biol Chem 290(20):12812–12820. https://doi.org/10.1074/jbc.M115.649723

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Sirrieh RE, MacLean DM, Jayaraman V (2015) A conserved structural mechanism of NMDA receptor inhibition: a comparison of ifenprodil and zinc. J Gen Physiol 146(2):173–181. https://doi.org/10.1085/jgp.201511422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Schlitter J, Engels M, Krüger P (1994) Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. J Mol Graph 12(2):84–89. https://doi.org/10.1016/0263-7855(94)80072-3

    Article  CAS  PubMed  Google Scholar 

  27. Tozzini V (2005) Coarse-grained models for proteins. Curr Opin Struct Biol 15(2):144–150. https://doi.org/10.1016/j.sbi.2005.02.005

    Article  CAS  PubMed  Google Scholar 

  28. Tozzini V (2010) Minimalist models for proteins: a comparative analysis. Q Rev Biophys 43(3):333–371. https://doi.org/10.1017/S0033583510000132

    Article  CAS  PubMed  Google Scholar 

  29. Atilgan AR, Durell SR, Jernigan RL, Demirel MC, Keskin O, Bahar I (2001) Anisotropy of fluctuation dynamics of proteins with an elastic network model. Biophys J 80(1):505–515. https://doi.org/10.1016/S0006-3495(01)76033-X

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Tama F, Sanejouand YH (2001) Conformational change of proteins arising from normal mode calculations. Protein Eng 14(1):1–6

    Article  CAS  PubMed  Google Scholar 

  31. Zheng W, Doniach S (2003) A comparative study of motor-protein motions by using a simple elastic-network model. Proc Natl Acad Sci USA 100(23):13253–13258. https://doi.org/10.1073/pnas.2235686100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Krebs WG, Alexandrov V, Wilson CA, Echols N, Yu H, Gerstein M (2002) Normal mode analysis of macromolecular motions in a database framework: developing mode concentration as a useful classifying statistic. Proteins 48(4):682–695. https://doi.org/10.1002/prot.10168

    Article  CAS  PubMed  Google Scholar 

  33. Dutta A, Krieger J, Lee JY, Garcia-Nafria J, Greger IH, Bahar I (2015) Cooperative dynamics of intact AMPA and NMDA glutamate receptors: similarities and subfamily-specific differences. Structure 23(9):1692–1704. https://doi.org/10.1016/j.str.2015.07.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dutta A, Shrivastava IH, Sukumaran M, Greger IH, Bahar I (2012) Comparative dynamics of NMDA- and AMPA-glutamate receptor N-terminal domains. Structure 20(11):1838–1849. https://doi.org/10.1016/j.str.2012.08.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Zheng W, Wen H, Iacobucci GJ, Popescu GK (2017) Probing the structural dynamics of the NMDA receptor activation by coarse-grained modeling. Biophys J 112(12):2589–2601. https://doi.org/10.1016/j.bpj.2017.04.043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng W, Auerbach A (2011) Decrypting the sequence of structural events during the gating transition of pentameric ligand-gated ion channels based on an interpolated elastic network model. PLoS Comput Biol 7(1):e1001046. https://doi.org/10.1371/journal.pcbi.1001046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zheng W (2015) Toward decrypting the allosteric mechanism of the ryanodine receptor based on coarse-grained structural and dynamic modeling. Proteins 83(12):2307–2318. https://doi.org/10.1002/prot.24951

    Article  CAS  PubMed  Google Scholar 

  38. Zheng W, Qin F (2015) A combined coarse-grained and all-atom simulation of TRPV1 channel gating and heat activation. J Gen Physiol 145(5):443–456. https://doi.org/10.1085/jgp.201411335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. UniProt Consortium (2014) UniProt: a hub for protein information. Nucleic Acids Res 43(D1):D204–D212. https://doi.org/10.1093/nar/gku989

    Article  CAS  Google Scholar 

  40. Guex N, Peitsch MC, Schwede T (2009) Automated comparative protein structure modeling with SWISS-MODEL and Swiss-PdbViewer: a historical perspective. Electrophoresis 30(S1):S162–S173. https://doi.org/10.1002/elps.200900140

    Article  PubMed  Google Scholar 

  41. Zheng W, Brooks BR, Doniach S, Thirumalai D (2005) Network of dynamically important residues in the open/closed transition in polymerases is strongly conserved. Structure 13(4):565–577. https://doi.org/10.1016/j.str.2005.01.017

    Article  CAS  PubMed  Google Scholar 

  42. Zheng W, Brooks BR, Thirumalai D (2006) Low-frequency normal modes that describe allosteric transitions in biological nanomachines are robust to sequence variations. Proc Natl Acad Sci USA 103(20):7664–7669. https://doi.org/10.1073/pnas.0510426103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Zheng W, Tekpinar M (2009) Large-scale evaluation of dynamically important residues in proteins predicted by the perturbation analysis of a coarse-grained elastic model. BMC Struct Biol 9:45. https://doi.org/10.1186/1472-6807-9-45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zheng W (2016) Probing the structural dynamics of the SNARE recycling machine based on coarse-grained modeling. Proteins 84:1055. https://doi.org/10.1002/prot.25052

    Article  CAS  PubMed  Google Scholar 

  45. Zheng W (2012) Coarse-grained modeling of the structural states and transition underlying the powerstroke of dynein motor domain. J Chem Phys 136(15):155103. https://doi.org/10.1063/1.4704661

    Article  CAS  PubMed  Google Scholar 

  46. Zheng W (2011) Accurate flexible fitting of high-resolution protein structures into cryo-electron microscopy maps using coarse-grained pseudo-energy minimization. Biophys J 100(2):478–488. https://doi.org/10.1016/j.bpj.2010.12.3680

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Humphrey W, Dalke A, Schulten K (1996) VMD: visual molecular dynamics. J Mol Graph 14(1):33–38, 27–38

    Article  CAS  PubMed  Google Scholar 

  48. Tekpinar M, Zheng W (2010) Predicting order of conformational changes during protein conformational transitions using an interpolated elastic network model. Proteins 78(11):2469–2481. https://doi.org/10.1002/prot.22755

    Article  CAS  PubMed  Google Scholar 

  49. Zheng W (2010) Multiscale modeling of structural dynamics underlying force generation and product release in actomyosin complex. Proteins 78(3):638–660. https://doi.org/10.1002/prot.22594

    Article  CAS  PubMed  Google Scholar 

  50. Jo S, Kim T, Im W (2007) Automated builder and database of protein/membrane complexes for molecular dynamics simulations. PLoS One 2(9):e880. https://doi.org/10.1371/journal.pone.0000880

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wu EL, Cheng X, Jo S, Rui H, Song KC, Davila-Contreras EM, Qi Y, Lee J, Monje-Galvan V, Venable RM, Klauda JB, Im W (2014) CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J Comput Chem 35(27):1997–2004. https://doi.org/10.1002/jcc.23702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Jo S, Lim JB, Klauda JB, Im W (2009) CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. Biophys J 97(1):50–58. https://doi.org/10.1016/j.bpj.2009.04.013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Iacobucci GJ, Wen H, Helou M, Liu B, Zheng W, Popescu GK (2021) Cross-subunit interactions that stabilize open states mediate gating in NMDA receptors. Proc Natl Acad Sci USA 118(2):e2007511118. https://doi.org/10.1073/pnas.2007511118

    Article  CAS  PubMed  Google Scholar 

  54. Nosé S (1984) A molecular dynamics method for simulations in the canonical ensemble. Mol Phys 52(2):255–268. https://doi.org/10.1080/00268978400101201

    Article  Google Scholar 

  55. Hoover WG (1985) Canonical dynamics: equilibrium phase-space distributions. Phys Rev A Gen Phys 31(3):1695–1697. https://doi.org/10.1103/physreva.31.1695

    Article  CAS  PubMed  Google Scholar 

  56. Parrinello M, Rahman A (1981) Polymorphic transitions in single crystals: a new molecular dynamics method. J Appl Phys 52(12):7182

    Article  CAS  Google Scholar 

  57. Darden T, York D, Pedersen L (1993) Particle mesh Ewald: an Nlog(N) method for Ewald sums in large systems. J Chem Phys 98:10089–10092. https://doi.org/10.1063/1.464397

    Article  CAS  Google Scholar 

  58. Hess B, Bekker H, Berendsen HJC, Fraaije JGEM (1998) LINCS: a linear constraint solver for molecular simulations. J Comp Chem 18(12):1463–1472

    Article  Google Scholar 

  59. Klauda JB, Venable RM, Freites JA, O’Connor JW, Tobias DJ, Mondragon-Ramirez C, Vorobyov I, MacKerell AD Jr, Pastor RW (2010) Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. J Phys Chem B 114(23):7830–7843. https://doi.org/10.1021/jp101759q

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang J, MacKerell AD Jr (2013) CHARMM36 all-atom additive protein force field: validation based on comparison to NMR data. J Comput Chem 34(25):2135–2145. https://doi.org/10.1002/jcc.23354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Jorgensen W, Chandrasekhar J, Madura J (1983) Comparison of simple potential functions for simulating liquid water. J Chem Phys 79(2):926–935

    Article  CAS  Google Scholar 

  62. Zheng W, Wen H (2017) A survey of coarse-grained methods for modeling protein conformational transitions. Curr Opin Struct Biol 42:24–30. https://doi.org/10.1016/j.sbi.2016.10.008

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenjun Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Zheng, W., Liu, X. (2024). Modeling and Simulation of the NMDA Receptor at Coarse-Grained and Atomistic Levels. In: Burnashev, N., Szepetowski, P. (eds) NMDA Receptors. Methods in Molecular Biology, vol 2799. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3830-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3830-9_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3829-3

  • Online ISBN: 978-1-0716-3830-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics