Skip to main content

Electrochemical Detection of Total Antioxidant Capacity (TAC) in Plant Tissues from Different Origins

  • Protocol
  • First Online:
ROS Signaling in Plants

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2798))

  • 225 Accesses

Abstract

Total antioxidant capacity (TAC) is a reliable indicator of antioxidant content in animal and plant samples. The different experimental approaches available allow the determination of TAC using, as a reference, diverse compounds with recognized antioxidant capacities such as Trolox, ascorbic acid, gallic acid, or melatonin. A new portable device, named BRS (BQC redox system), is now commercially available that, through an electrochemical approach, allows the determination of TAC in a simple, fast, reproducible, and robust way. In this chapter, using this portable device, a comparative analysis of the TAC is assayed in different red, citrus, and Solanaceae fruits, several Allium species, and organs of different plant species, including Arabidopsis thaliana. The obtained results demonstrate the versatility of the BRS portable device.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Corpas FJ, Gupta DK, Palma JM (2015) Production sites of reactive oxygen species (ROS) in organelles from plant cells. In: Gupta DK et al (eds) Reactive oxygen species and oxidative damage in plants under stress. Springer, Cham, pp 1–22. https://doi.org/10.1007/978-3-319-20421-5_1

    Chapter  Google Scholar 

  2. Sies H, Jones DP (2020) Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat Rev Mol Cell Biol 21(7):363–383

    Article  CAS  PubMed  Google Scholar 

  3. Considine MJ, Foyer CH (2021) Oxygen and reactive oxygen species-dependent regulation of plant growth and development. Plant Physiol 186:79–92

    Article  CAS  PubMed  Google Scholar 

  4. Sies H, Belousov VV, Chandel NS, Davies MJ, Jones DP, Mann GE, Murphy MP, Yamamoto M, Winterbourn C (2022) Defining roles of specific reactive oxygen species (ROS) in cell biology and physiology. Nat Rev Mol Cell Biol 23:499–515

    Article  CAS  PubMed  Google Scholar 

  5. Zhou X, Hao T, Zhou Y, Tang W, Xiao Y, Meng X, Fang X (2015) Relationships between antioxidant compounds and antioxidant activities of tartary buckwheat during germination. J Food Sci Technol 52:2458–2463

    Article  CAS  PubMed  Google Scholar 

  6. Correia S, Schouten R, Silva AP, Gonçalves B (2017) Factors affecting quality and health promoting compounds during growth and postharvest life of sweet cherry (Prunus avium L.). Front Plant Sci 8:2166

    Article  PubMed  PubMed Central  Google Scholar 

  7. Agati G, Azzarello E, Pollastri S, Tattini M (2012) Flavonoids as antioxidants in plants: location and functional significance. Plant Sci 196:67–76

    Article  CAS  PubMed  Google Scholar 

  8. Corpas FJ, Freschi L, Palma FJ (2023) ROS metabolism and ripening of fleshy fruits. Adv Bot Res 105:205–238

    Article  CAS  Google Scholar 

  9. Wahyuni Y, Ballester AR, Sudarmonowati E, Bino RJ, Bovy AG (2013) Secondary metabolites of capsicum species and their importance in the human diet. J Nat Prod 76:783–793

    Article  CAS  PubMed  Google Scholar 

  10. Raiola A, Tenore GC, Barone A, Frusciante L, Rigano MM (2015) Vitamin E content and composition in tomato fruits: beneficial roles and bio-fortification. Int J Mol Sci 16:29250–29264

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao X, Yuan Z (2021) Anthocyanins from pomegranate (Punica granatum L.) and their role in antioxidant capacities in vitro. Chem Biodivers 18(10):e2100399

    Article  CAS  PubMed  Google Scholar 

  12. Merecz-Sadowska A, Sitarek P, Kowalczyk T, Zajdel K, Jęcek M, Nowak P, Zajdel R (2023) Food anthocyanins: Malvidin and its glycosides as promising antioxidant and anti-inflammatory agents with potential health benefits. Nutrients 15(13):3016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rodríguez-Ruiz M, Ramos MC, Campos MJ, Díaz-Sánchez I, Cautain B, Mackenzie TA, Vicente F, Corpas FJ, Palma JM (2023) Pepper fruit extracts show anti-proliferative activity against tumor cells altering their NADPH-generating dehydrogenase and catalase profiles. Antioxidants 12:1461

    Article  PubMed  PubMed Central  Google Scholar 

  14. Gökmen V, Serpen A, Fogliano V (2009) Direct measurement of the total antioxidant capacity of foods: the “QUENCHER” approach. Trends Food Sci 20:278–288

    Article  Google Scholar 

  15. Mendonça JDS, Guimarães RCA, Zorgetto-Pinheiro VA, Fernandes CDP, Marcelino G, Bogo D, Freitas KC, Hiane PA, de Pádua Melo ES, Vilela MLB, Nascimento VAD (2022) Natural antioxidant evaluation: a review of detection methods. Molecules 27:3563

    Article  PubMed  PubMed Central  Google Scholar 

  16. Antolovich M, Prenzler PD, Patsalides E, McDonald S, Robards K (2002) Methods for testing antioxidant activity. Analyst 127:183–198

    Article  CAS  PubMed  Google Scholar 

  17. Niki E (2010) Assessment of antioxidant capacity in vitro and in vivo. Free Radic Biol Med 49(4):503–515

    Article  CAS  PubMed  Google Scholar 

  18. Munteanu IG, Apetrei C (2021) Analytical methods used in determining antioxidant activity: a review. Int J Mol Sci 22:3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Chiorcea-Paquim AM, Enache TA, De Souza GE, Oliveira-Brett AM (2020) Natural phenolic antioxidants electrochemistry: towards a new food science methodology. Compr Rev Food Sci Food Saf 19:1680–1726

    Article  CAS  PubMed  Google Scholar 

  20. Silvestrini A, Meucci E, Ricerca BM, Mancini A (2023) Total antioxidant capacity: biochemical aspects and clinical significance. Int J Mol Sci 24:10978

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Brainina KZ, Shpigun LK (2022) State-of-the-art electrochemistry for the assessment of oxidative stress and integral antioxidant activity of biological environments. Electrochem Sci Adv 1

    Google Scholar 

  22. Munteanu IG, Apetrei C (2022) A review on electrochemical sensors and biosensors used in assessing antioxidant activity. Antioxidants 11:584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors’ research is supported by the European Regional Development Fund with cofinanced grants from the Spanish Ministry of Science, Innovation and Universities (PID2019-103924GB-I00 and CPP2021-008703), Spain. The help and collaboration of María Díaz-González, Sandra Tamargo-Díaz, Sara Menéndez-Cotarelo, Alba Iglesias-Mayor, Alba M Casielles, and Henar Muñoz-Cimadevilla from BQC Redox Technologies (Oviedo, Spain) is deeply acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Corpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Corpas, F.J., Rodríguez-Ruiz, M., Campos, M.J., Taboada, J., Palma, J.M. (2024). Electrochemical Detection of Total Antioxidant Capacity (TAC) in Plant Tissues from Different Origins. In: Corpas, F.J., Palma, J.M. (eds) ROS Signaling in Plants . Methods in Molecular Biology, vol 2798. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3826-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3826-2_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3825-5

  • Online ISBN: 978-1-0716-3826-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics