Abstract
Automated patch clamp recording is a valuable technique in drug discovery and the study of ion channels. It allows for the precise measurement and manipulation of channel currents, providing insights into their function and modulation by drugs or other compounds. The melanocortin 4 receptor (MC4-R) is a G protein-coupled receptor (GPCR) crucial to appetite regulation, energy balance, and body weight. MC4-R signaling is complex and involves interactions with other receptors and neuropeptides in the appetite-regulating circuitry. MC4-Rs, like other GPCRs, are known to modulate ion channels such as Kir7.1, an inward rectifier potassium channel, in response to ligand binding. This modulation is critical for controlling ion flow across the cell membrane, which can influence membrane potential, excitability, and neurotransmission. The MC4-R is the target for the anti-obesity drug Imcivree. However, this drug is known to lack optimal potency and also has side effects. Using high-throughput techniques for studying the MC4-R/Kir7.1 complex allows researchers to rapidly screen many compounds or conditions, aiding the development of drugs that target this system. Additionally, automated patch clamp recording of this receptor–channel complex and its ligands can provide valuable functional and pharmacological insights supporting the development of novel therapeutic strategies. This approach can be generalized to other GPCR-gated ion channel functional complexes, potentially accelerating the pace of research in different fields with the promise to uncover previously unknown aspects of receptor–ion channel interactions.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Hernandez CC, Tarfa RA, Miguel ILJ, Liu R, Mondal P, Hill C et al (2022) Development of an automated screen for Kv7.2 potassium channels and discovery of a new agonist chemotype. Bioorg Med Chem Lett 71:128841. https://doi.org/10.1016/j.bmcl.2022.128841
Hernandez CC, Shen Y, Hu N, Shen W, Narayanan V, Ramsey K et al (2023) GABRG2 variants associated with febrile seizures. Biomolecules 13(3):414. https://doi.org/10.3390/biom13030414
Buch TR, Heling D, Damm E, Gudermann T, Breit A (2009) Pertussis toxin-sensitive signaling of melanocortin-4 receptors in hypothalamic GT1-7 cells defines agouti-related protein as a biased agonist. J Biol Chem 284(39):26411–26420. https://doi.org/10.1074/jbc.M109.039339
Breit A, Buch TR, Boekhoff I, Solinski HJ, Damm E, Gudermann T (2011) Alternative G protein coupling and biased agonism: new insights into melanocortin-4 receptor signalling. Mol Cell Endocrinol 331(2):232–240. https://doi.org/10.1016/j.mce.2010.07.007
Yang LK, Tao YX (2017) Biased signaling at neural melanocortin receptors in regulation of energy homeostasis. Biochim Biophys Acta Mol basis Dis 1863(10 Pt A):2486–2495. https://doi.org/10.1016/j.bbadis.2017.04.010
Lotta LA, Mokrosiński J, Mendes de Oliveira E, Li C, Sharp SJ, Luan J et al (2019) Human gain-of-function MC4R variants show signaling bias and protect against obesity. Cell 177(3):597–607.e9. https://doi.org/10.1016/j.cell.2019.03.044
Carrington SJ, Hernandez CC, Swale DR, Aluko OA, Denton JS, Cone RD (2018) G protein-coupled receptors differentially regulate glycosylation and activity of the inwardly rectifying potassium channel Kir7.1. J Biol Chem 293(46):17739–17753. https://doi.org/10.1074/jbc.RA118.003238
Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348(12):1085–1095. https://doi.org/10.1056/NEJMoa022050
Butler AA, Marks DL, Fan W, Kuhn CM, Bartolome M, Cone RD (2001) Melanocortin-4 receptor is required for acute homeostatic responses to increased dietary fat. Nat Neurosci 4(6):605–611. https://doi.org/10.1038/88423
Fan W, Boston BA, Kesterson RA, Hruby VJ, Cone RD (1997) Role of melanocortinergic neurons in feeding and the agouti obesity syndrome. Nature 385(6612):165–168. https://doi.org/10.1038/385165a0
Ericson MD, Lensing CJ, Fleming KA, Schlasner KN, Doering SR, Haskell-Luevano C (2017) Bench-top to clinical therapies: a review of melanocortin ligands from 1954 to 2016. Biochim Biophys Acta Mol basis Dis 1863(10 Pt A):2414–2435. https://doi.org/10.1016/j.bbadis.2017.03.020
Collet TH, Dubern B, Mokrosinski J, Connors H, Keogh JM, Mendes de Oliveira E et al (2017) Evaluation of a melanocortin-4 receptor (MC4R) agonist (Setmelanotide) in MC4R deficiency. Mol Metab 6(10):1321–1329. https://doi.org/10.1016/j.molmet.2017.06.015
Hruby VJ, Lu D, Sharma SD, Castrucci AL, Kesterson RA, al-Obeidi FA, et al. (1995) Cyclic lactam alpha-melanotropin analogues of Ac-Nle4-cyclo[Asp5, D-Phe7,Lys10] alpha-melanocyte-stimulating hormone-(4-10)-NH2 with bulky aromatic amino acids at position 7 show high antagonist potency and selectivity at specific melanocortin receptors. J Med Chem 38(18):3454-3461. doi: https://doi.org/10.1021/jm00018a005.
Sutton GM, Josephine Babin M, Gu X, Hruby VJ, Butler AA (2008) A derivative of the melanocortin receptor antagonist SHU9119 (PG932) increases food intake when administered peripherally. Peptides 29(1):104–111. https://doi.org/10.1016/j.peptides.2007.10.014
Greenfield JR, Miller JW, Keogh JM, Henning E, Satterwhite JH, Cameron GS et al (2009) Modulation of blood pressure by central melanocortinergic pathways. N Engl J Med 360(1):44–52. https://doi.org/10.1056/NEJMoa0803085
Li P, Cui BP, Zhang LL, Sun HJ, Liu TY, Zhu GQ (2013) Melanocortin 3/4 receptors in paraventricular nucleus modulate sympathetic outflow and blood pressure. Exp Physiol 98(2):435–443. https://doi.org/10.1113/expphysiol.2012.067256
da Silva AA, do Carmo JM, Wang Z, Hall JE (2019) Melanocortin-4 receptors and sympathetic nervous system activation in hypertension. Curr Hypertens Rep 21(6):46. https://doi.org/10.1007/s11906-019-0951-x
Podyma B, Sun H, Wilson EA, Carlson B, Pritikin E, Gavrilova O et al (2018) The stimulatory G protein Gsalpha is required in melanocortin 4 receptor-expressing cells for normal energy balance, thermogenesis, and glucose metabolism. J Biol Chem 293(28):10993–11005. https://doi.org/10.1074/jbc.RA118.003450
Li Y-Q, Shrestha Y, Pandey M, Chen M, Kablan A, Gavrilova O et al (2016) Gq/11α and Gsα mediate distinct physiological responses to central melanocortins. J Clin Invest 126(1):40–49. https://doi.org/10.1172/JCI76348
Sohn JW, Harris LE, Berglund ED, Liu T, Vong L, Lowell BB et al (2013) Melanocortin 4 receptors reciprocally regulate sympathetic and parasympathetic preganglionic neurons. Cell 152(3):612–619. https://doi.org/10.1016/j.cell.2012.12.022
Sharma S, Garfield AS, Shah B, Kleyn P, Ichetovkin I, Moeller IH et al (2019) Current mechanistic and pharmacodynamic understanding of melanocortin-4 receptor activation. Molecules 24(10). https://doi.org/10.3390/molecules24101892
Ghamari-Langroudi M, Digby GJ, Sebag JA, Millhauser GL, Palomino R, Matthews R et al (2015) G-protein-independent coupling of MC4R to Kir7.1 in hypothalamic neurons. Nature 520(7545):94–98. https://doi.org/10.1038/nature14051
Hernandez CC, Gimenez LE, Dahir NS, Peisley A, Cone RD (2023) The unique structural characteristics of the Kir 7.1 inward rectifier potassium channel: a novel player in energy homeostasis control. Am J Phys Cell Physiol 324(3):C694–c706. https://doi.org/10.1152/ajpcell.00335.2022
Yu J, Gimenez LE, Hernandez CC, Wu Y, Wein AH, Han GW et al (2020) Determination of the melanocortin-4 receptor structure identifies Ca(2+) as a cofactor for ligand binding. Science 368(6489):428–433. https://doi.org/10.1126/science.aaz8995
Anderson EJP, Ghamari-Langroudi M, Cakir I, Litt MJ, Chen V, Reggiardo RE et al (2019) Late onset obesity in mice with targeted deletion of potassium inward rectifier Kir7.1 from cells expressing the melanocortin-4 receptor. J Neuroendocrinol 31(1):e12670. https://doi.org/10.1111/jne.12670
Doring F, Derst C, Wischmeyer E, Karschin C, Schneggenburger R, Daut J et al (1998) The epithelial inward rectifier channel Kir7.1 displays unusual K+ permeation properties. J Neurosci 18(21):8625–8636
Krapivinsky G, Medina I, Eng L, Krapivinsky L, Yang Y, Clapham DE (1998) A novel inward rectifier K+ channel with unique pore properties. Neuron 20(5):995–1005. https://doi.org/10.1016/s0896-6273(00)80480-8
Lewis LM, Bhave G, Chauder BA, Banerjee S, Lornsen KA, Redha R et al (2009) High-throughput screening reveals a small-molecule inhibitor of the renal outer medullary potassium channel and Kir7.1. Mol Pharmacol 76(5):1094–1103. https://doi.org/10.1124/mol.109.059840
Swale DR, Kurata H, Kharade SV, Sheehan J, Raphemot R, Voigtritter KR et al (2016) ML418: the first selective, sub-micromolar pore blocker of Kir7.1 potassium channels. ACS Chem Neurosci 7(7):1013–1023. https://doi.org/10.1021/acschemneuro.6b00111
Haskell-Luevano C, Cone RD, Monck EK, Wan YP (2001) Structure activity studies of the melanocortin-4 receptor by in vitro mutagenesis: identification of agouti-related protein (AGRP), melanocortin agonist and synthetic peptide antagonist interaction determinants. Biochemistry 40(20):6164–6179. https://doi.org/10.1021/bi010025q
Vos TJ, Caracoti A, Che JL, Dai M, Farrer CA, Forsyth NE et al (2004) Identification of 2-[2-[2-(5-bromo-2- methoxyphenyl)-ethyl]-3-fluorophenyl]-4,5-dihydro-1H-imidazole (ML00253764), a small molecule melanocortin 4 receptor antagonist that effectively reduces tumor-induced weight loss in a mouse model. J Med Chem 47(7):1602–1604. https://doi.org/10.1021/jm034244g
Weyermann P, Dallmann R, Magyar J, Anklin C, Hufschmid M, Dubach-Powell J et al (2009) Orally available selective melanocortin-4 receptor antagonists stimulate food intake and reduce cancer-induced cachexia in mice. PLoS One 4(3):e4774. https://doi.org/10.1371/journal.pone.0004774
Zhang JH, Chung TD, Oldenburg KR (1999) A simple statistical parameter for use in evaluation and validation of high throughput screening assays. J Biomol Screen 4(2):67–73. https://doi.org/10.1177/108705719900400206
Raphemot R, Lonergan DF, Nguyen TT, Utley T, Lewis LM, Kadakia R et al (2011) Discovery, characterization, and structure-activity relationships of an inhibitor of inward rectifier potassium (Kir) channels with preference for Kir2.3, Kir3.x, and Kir7.1. Front Pharmacol 2:75. https://doi.org/10.3389/fphar.2011.00075
Obergrussberger A, Rinke-Weiß I, Goetze TA, Rapedius M, Brinkwirth N, Becker N et al (2022) The suitability of high throughput automated patch clamp for physiological applications. J Physiol 600(2):277–297. https://doi.org/10.1113/jp282107
Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336(2):296–302. https://doi.org/10.1124/jpet.110.173948
Schild HO (1947) pA, a new scale for the measurement of drug antagonism. Br J Pharmacol Chemother 2(3):189–206. https://doi.org/10.1111/j.1476-5381.1947.tb00336.x
Acknowledgments
We thank the Center for Chemical Genomics at the University of Michigan Life Sciences Institute for the collaboration and for providing the compounds from the Drug Repurposing Library. This work was partly funded by the Michigan Drug Discovery Initiative Grant No. U076275-22204S (to C. C. Hernandez and L. E. Gimenez), the Klatskin-Sutker Discovery Fund Award No. G026085 (to C. C. Hernandez), and NIH grant 1S10OD025203 to the Center for Chemical Genomics at the University of Michigan.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature
About this protocol
Cite this protocol
Hernandez, C.C., Gimenez, L.E., Cone, R.D. (2024). Automated Patch Clamp Recordings of GPCR-Gated Ion Channels: Targeting the MC4-R/Kir7.1 Potassium Channel Complex. In: Furini, S. (eds) Potassium Channels. Methods in Molecular Biology, vol 2796. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3818-7_14
Download citation
DOI: https://doi.org/10.1007/978-1-0716-3818-7_14
Published:
Publisher Name: Humana, New York, NY
Print ISBN: 978-1-0716-3817-0
Online ISBN: 978-1-0716-3818-7
eBook Packages: Springer Protocols