Skip to main content

Mathematical Modeling of Photo- and Thermomorphogenesis in Plants

  • Protocol
  • First Online:
Thermomorphogenesis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2795))

Abstract

Increased day lengths and warm conditions inversely affect plant growth by directly modulating nuclear phyB, ELF3, and COP1 levels. Quantitative measures of the hypocotyl length have been key to gaining a deeper understanding of this complex regulatory network, while similar quantitative data are the foundation for many studies in plant biology. Here, we explore the application of mathematical modeling, specifically ordinary differential equations (ODEs), to understand plant responses to these environmental cues. We provide a comprehensive guide to constructing, simulating, and fitting these models to data, using the law of mass action to study the evolution of molecular species. The fundamental principles of these models are introduced, highlighting their utility in deciphering complex plant physiological interactions and testing hypotheses. This brief introduction will not allow experimentalists without a mathematical background to run their own simulations overnight, but it will help them grasp modeling principles and communicate with more theory-inclined colleagues.

Authors Gabriel Rodriguez-Maroto and Pablo Catalán are the co-first authors for this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Legris M, Nieto C, Sellaro R, Prat S, Casal JJ (2017) Perception and signalling of light and temperature cues in plants. Plant J 90:683–697

    Article  CAS  PubMed  Google Scholar 

  2. Ingalls BP (2013) Mathematical modeling in systems biology: an introduction. MIT press

    Google Scholar 

  3. Rausenberger J, Hussong A, Kircher S, Kirchenbauer D, Timmer J, Nagy F, Schafer E, Fleck C (2010) An integrative model for phytochrome B mediated photomorphogenesis: from protein dynamics to physiology. PLoS One 5:e10721

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feinberg M (2019) Applied mathematical sciences: foundations of chemical reaction network theory. Springer, New York

    Book  Google Scholar 

  5. Pay ML, Kim DW, Somers DE, Kim JK, Foo M (2022) Modeling of plant circadian clock for characterizing hypocotyl growth under different light quality conditions. silico Plants 4:diac001

    Article  Google Scholar 

  6. Avello PA, Davis SJ, Ronald J, Pitchford JW (2019) Heat the clock: entrainment and compensation in Arabidopsis circadian rhythms. J Circadian Rhythms 17:5

    Article  PubMed  PubMed Central  Google Scholar 

  7. Reed MC (2004) Why is mathematical biology so hard. Not Am Math Soc 51:338–342

    Google Scholar 

  8. Weiße AY, Oyarzún DA, Danos V, Swain PS (2015) Mechanistic links between cellular trade-offs, gene expression, and growth. Proc Natl Acad Sci USA 112:E1038–E1047

    Article  PubMed  PubMed Central  Google Scholar 

  9. Milo R, Phillips R (2015) Cell biology by the numbers. Garland Science, New York

    Book  Google Scholar 

  10. C++ language. https://cplusplus.com/doc/tutorial/. Accessed July 7 2023

  11. Mathworks (2023) Learn with Matlab tutorials. https://mathworks.com/support/learn-with-matlab-tutorials.html. Accessed July 7 2023

  12. The Python Software Foundation (2023) The Python Tutorial. https://docs.python.org/3/tutorial/. Accessed July 7 2023

  13. Doedel EJ, Oldeman B (1998) Auto-07p: continuation and bifurcation software. Concordia University Canada, Montreal, QC

    Google Scholar 

  14. Paik I, Huq E (2019) Plant photoreceptors: multi-functional sensory proteins and their signaling networks. Semin Cell and Dev Biol 92:114–121

    Article  CAS  Google Scholar 

  15. Sanchez SE, Kay SA (2016) The plant circadian clock: from a simple timekeeper to a complex developmental manager. Cold Spring Harb Perspect Biol 8:a027748

    Article  PubMed  PubMed Central  Google Scholar 

  16. Johansson H, Jones HJ, Foreman J, Hemsted JR, Stewart K, Grima R, Halliday KJ (2014) Arabidopsis cell expansion is controlled by a photothermal switch. Nat Commun 5:4848

    Article  CAS  PubMed  Google Scholar 

  17. Legris M, Klose C, Burgie ES, Rojas CCR, Neme M, Hiltbrunner A, Wigge PA, Schäfer E, Vierstra RD, Casal JJ (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900

    Article  CAS  PubMed  Google Scholar 

  18. Jung JH, Domijan M, Klose C, Biswas S, Ezer D, Gao M, Khattak AK, Box MS, Charoensawan V, Cortijo S, Kumar M (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354:886–889

    Article  CAS  PubMed  Google Scholar 

  19. De Caluwé J, Xiao Q, Hermans C, Verbruggen N, Leloup JC, Gonze D (2016) A compact model for the complex plant circadian clock. Front Plant Sci 7:74

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yu JW, Rubio V, Lee NY, Bai S, Lee SY, Kim SS et al (2008) COP1 and ELF3 control circadian function and photoperiodic flowering by regulating GI stability. Mol Cell 32:617–630

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Jang IC, Henriques R, Seo HS, Nagatani A, Chua NH (2010) Arabidopsis phytochrome interacting factor proteins promote phytochrome B polyubiquitination by COP1 E3 ligase in the nucleus. Plant Cell 22:2370–2383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Park E, Kim Y, Choi G (2018) Phytochrome B requires PIF degradation and sequestration to induce light responses across a wide range of light conditions. Plant Cell 30:1277–1292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Nieto C, López-Salmerón V, Davière JM, Prat S (2015) ELF3-PIF4 interaction regulates plant growth independently of the evening complex. Curr Biol 25:187–193

    Article  CAS  PubMed  Google Scholar 

  24. Osterlund MT, Wei N, Deng XW (2000) The roles of photoreceptor systems and the COP1-targeted destabilization of HY5 in light control of Arabidopsis seedling development. Plant Physiol 124:1520–1524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nieto C, Catalán P, Luengo LM, Legris M, López-Salmerón V, Davière JM, Casal JJ, Ares S, Prat S (2022) COP1 dynamics integrate conflicting seasonal light and thermal cues in the control of Arabidopsis elongation. Sci Adv 8:eabp8412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Bender CM, Orszag SA (1999) Advanced mathematical methods for scientists and engineers I: asymptotic methods and perturbation theory. Springer, New York

    Book  Google Scholar 

  27. Strogatz SH (2018) Nonlinear dynamics and chaos with student solutions manual: with applications to physics, biology, chemistry, and engineering. CRC Press, Boca Raton

    Book  Google Scholar 

  28. Ermentrout B, Mahajan A (2003) Simulating, analyzing, and animating dynamical systems: a guide to XPPAUT for researchers and students. Appl Mech Rev 56:B53

    Article  Google Scholar 

  29. Mathworks (2023) ode45: Solve nonstiff differential equations — medium order method. https://mathworks.com/help/matlab/ref/ode45.html. Accessed July 7 2023

  30. SciPy documentation (2023) scipy.integrate.solve_ivp. https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.solve_ivp.html. Accessed July 7 2023

  31. Boost C++ Libraries (2023) Odeint. https://www.boost.org/doc/libs/1_74_0/libs/numeric/odeint/doc/html/index.html. Accessed July 7 2023

  32. Spijker MN (1996) Stiffness in numerical initial-value problems. J Comput Appl Math 72:393–406

    Article  Google Scholar 

  33. Liu JS, Liu JS (2001) Monte Carlo strategies in scientific computing, vol 75. Springer, New York

    Google Scholar 

  34. Kirkpatrick S, Gelatt CD Jr, Vecchi MP (1983) Optimization by simulated annealing. Science 220:671–680

    Article  CAS  PubMed  Google Scholar 

  35. Prusinkiewicz P, Rolland-Lagan AG (2006) Modeling plant morphogenesis. Curr Opin Plant Biol 9:83–88

    Article  CAS  PubMed  Google Scholar 

  36. Karlin S, Taylor HM (1975) A first course in stochastic processes. Academic Press

    Google Scholar 

  37. Gillespie DT (2000) The chemical Langevin equation. J Chem Phys 113:297–306

    Article  CAS  Google Scholar 

  38. Muñoz-García J, Ares S (2016) Formation and maintenance of nitrogen-fixing cell patterns in filamentous cyanobacteria. Proc Natl Acad Sci USA 113:6218–6223

    Article  PubMed  PubMed Central  Google Scholar 

  39. Casanova-Ferrer P, Ares S, Muñoz-García J (2022) Terminal heterocyst differentiation in the Anabaena patA mutant as a result of post-transcriptional modifications and molecular leakage. PLOS Comp Biol 18:e1010359

    Article  CAS  Google Scholar 

  40. Transtrum MK, Machta BB, Brown KS, Daniels BC, Myers CR, Sethna JP (2015) Perspective: sloppiness and emergent theories in physics, biology, and beyond. J Chem Phys 143:010901

    Article  PubMed  Google Scholar 

  41. Transtrum MK, Qiu P (2014) Model reduction by manifold boundaries. Phys Rev Lett 113:098701

    Article  PubMed  PubMed Central  Google Scholar 

  42. Villaverde AF, Pathirana D, Fröhlich F, Hasenauer J, Banga JR (2022) A protocol for dynamic model calibration. Brief Bioinform 23:bbab387

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Research has been supported by Spanish MCIN/AEI/10.13039/501100011033/ and FEDER, EU (grant nos. PGC2018-098186-B-100 and PID2022-142185NB-C22 to P.C., PID2022-142185NB-C21 to S.A., and BIO2017-90056-R/PID2020-119758RB-I00 to S.P.), besides grant BADS, no. PID2019-109320GB-100, to S.A. and P.C. The CNB and CRAG Institutes also received the “Severo Ochoa” Centers of Excellence SEV 2017-0712 (CNB) and CEX2019-000902-S (CRAG) awards from the Spanish Ministerio de Ciencia e Innovación. We thank Jorge J. Casal for enlightening discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pablo Catalán or Saúl Ares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rodriguez-Maroto, G., Catalán, P., Nieto, C., Prat, S., Ares, S. (2024). Mathematical Modeling of Photo- and Thermomorphogenesis in Plants. In: Chen, M. (eds) Thermomorphogenesis. Methods in Molecular Biology, vol 2795. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3814-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3814-9_23

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3813-2

  • Online ISBN: 978-1-0716-3814-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics