Skip to main content

Two-Photon FRET/FLIM Imaging of Cerebral Neurons

  • Protocol
  • First Online:
Cerebral Cortex Development

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2794))

  • 46 Accesses

Abstract

Two-photon FRET (Förster resonance energy transfer) and FLIM (fluorescence lifetime imaging microscopy) enable the detection of FRET changes of fluorescence reporters in deep brain tissues, which provide a valuable approach for monitoring target molecular dynamics and functions. Here, we describe two-photon FRET and FLIM imaging techniques that allow us to visualize endogenous and optogenetically induced cAMP dynamics in living neurons with genetically engineered FRET-based cAMP reporters.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Beavo JA, Brunton LL (2002) Cyclic nucleotide research—still expanding after half a century. Nat Rev Mol Cell Biol 3(9):710–718. https://doi.org/10.1038/nrm911

    Article  CAS  PubMed  Google Scholar 

  2. Chetkovich DM, Gray R, Johnston D, Sweatt JD (1991) N-methyl-D-aspartate receptor activation increases cAMP levels and voltage-gated Ca2+ channel activity in area CA1 of hippocampus. Proc Natl Acad Sci USA 88(15):6467–6471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Chetkovich DM, Sweatt JD (1993) nMDA receptor activation increases cyclic AMP in area CA1 of the hippocampus via calcium/calmodulin stimulation of adenylyl cyclase. J Neurochem 61(5):1933–1942

    Article  CAS  PubMed  Google Scholar 

  4. Greengard P, Jen J, Nairn AC, Stevens CF (1991) Enhancement of the glutamate response by camp-dependent protein-kinase in hippocampal-neurons. Science 253(5024):1135–1138. https://doi.org/10.1126/science.1716001

    Article  CAS  PubMed  Google Scholar 

  5. Seeman P (1980) Brain dopamine-receptors. Pharmacol Rev 32(3):229–313

    CAS  PubMed  Google Scholar 

  6. Iseki M, Matsunaga S, Murakami A, Ohno K, Shiga K, Yoshida K, Sugai M, Takahashi T, Hori T, Watanabe M (2002) A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 415(6875):1047–1051. https://doi.org/10.1038/4151047a

    Article  CAS  PubMed  Google Scholar 

  7. Stierl M, Stumpf P, Udwari D, Gueta R, Hagedorn R, Losi A, Gartner W, Petereit L, Efetova M, Schwarzel M, Oertner TG, Nagel G, Hegemann P (2011) Light modulation of cellular cAMP by a small bacterial photoactivated adenylyl cyclase, bPAC, of the soil bacterium Beggiatoa. J Biol Chem 286(2):1181–1188. https://doi.org/10.1074/jbc.M110.185496

    Article  CAS  PubMed  Google Scholar 

  8. Luyben TT, Rai J, Li H, Georgiou J, Avila A, Zhen M, Collingridge GL, Tominaga T, Okamoto K (2020) Optogenetic manipulation of postsynaptic cAMP using a novel transgenic mouse line enables synaptic plasticity and enhances depolarization following tetanic stimulation in the hippocampal dentate gyrus. Front Neural Circ 14:24. https://doi.org/10.3389/fncir.2020.00024

    Article  CAS  Google Scholar 

  9. Zhang SX, Lutas A, Yang S, Diaz A, Fluhr H, Nagel G, Gao S, Andermann ML (2021) Hypothalamic dopamine neurons motivate mating through persistent cAMP signalling. Nature 597(7875):245–249. https://doi.org/10.1038/s41586-021-03845-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khan M, Goldsmith CR, Huang Z, Georgiou J, Luyben TT, Roder JC, Lippard SJ, Okamoto K (2014) Two-photon imaging of Zn2+ dynamics in mossy fiber boutons of adult hippocampal slices. Proc Natl Acad Sci USA 111(18):6786–6791. https://doi.org/10.1073/pnas.1405154111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ochiishi T, Futai K, Okamoto K, Kameyama K, Kosik KS (2008) Regulation of AMPA receptor trafficking by delta-catenin. Mol Cell Neurosci 39(4):499–507. https://doi.org/10.1016/j.mcn.2008.06.002

    Article  CAS  PubMed  Google Scholar 

  12. Kim K, Lakhanpal G, Lu HE, Khan M, Suzuki A, Hayashi MK, Narayanan R, Luyben TT, Matsuda T, Nagai T, Blanpied TA, Hayashi Y, Okamoto K (2015) A temporary gating of actin remodeling during synaptic plasticity consists of the interplay between the kinase and structural functions of CaMKII. Neuron 87(4):813–826. https://doi.org/10.1016/j.neuron.2015.07.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Mower AF, Kwok S, Yu H, Majewska AK, Okamoto K, Hayashi Y, Sur M (2011) Experience-dependent regulation of CaMKII activity within single visual cortex synapses in vivo. Proc Natl Acad Sci USA 108(52):21241–21246. https://doi.org/10.1073/pnas.1108261109

    Article  PubMed  PubMed Central  Google Scholar 

  14. Okamoto K, Hayashi Y (2006) Visualization of F-actin and G-actin equilibrium using fluorescence resonance energy transfer (FRET) in cultured cells and neurons in slices. Nat Protoc 1(2):911–919. https://doi.org/10.1038/nprot.2006.122

    Article  CAS  PubMed  Google Scholar 

  15. Okamoto K, Nagai T, Miyawaki A, Hayashi Y (2004) Rapid and persistent modulation of actin dynamics regulates postsynaptic reorganization underlying bidirectional plasticity. Nat Neurosci 7(10):1104–1112

    Article  CAS  PubMed  Google Scholar 

  16. Takao K, Okamoto K, Nakagawa T, Neve RL, Nagai T, Miyawaki A, Hashikawa T, Kobayashi S, Hayashi Y (2005) Visualization of synaptic Ca2+ /calmodulin-dependent protein kinase II activity in living neurons. J Neurosci 25(12):3107–3112. https://doi.org/10.1523/JNEUROSCI.0085-05.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Gorshkov K, Zhang J (2014) Visualization of cyclic nucleotide dynamics in neurons. Front Cell Neurosci 8:395. https://doi.org/10.3389/fncel.2014.00395

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sprenger JU, Nikolaev VO (2013) Biophysical techniques for detection of cAMP and cGMP in living cells. Int J Mol Sci 14(4):8025–8046. https://doi.org/10.3390/ijms14048025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Violin JD, DiPilato LM, Yildirim N, Elston TC, Zhang J, Lefkowitz RJ (2008) beta2-adrenergic receptor signaling and desensitization elucidated by quantitative modeling of real time cAMP dynamics. J Biol Chem 283(5):2949–2961. https://doi.org/10.1074/jbc.M707009200

    Article  CAS  PubMed  Google Scholar 

  20. Goedhart J, von Stetten D, Noirclerc-Savoye M, Lelimousin M, Joosen L, Hink MA, van Weeren L, Gadella TW Jr, Royant A (2012) Structure-guided evolution of cyan fluorescent proteins towards a quantum yield of 93%. Nat Commun 3:751. https://doi.org/10.1038/ncomms1738

    Article  CAS  PubMed  Google Scholar 

  21. Klarenbeek JB, Goedhart J, Hink MA, Gadella TW, Jalink K (2011) A mTurquoise-based cAMP sensor for both FLIM and ratiometric read-out has improved dynamic range. PLoS One 6(4):e19170. https://doi.org/10.1371/journal.pone.0019170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Niwa H, Yamamura K, Miyazaki J (1991) Efficient selection for high-expression transfectants with a novel eukaryotic vector. Gene 108(2):193–199

    Article  CAS  PubMed  Google Scholar 

  23. Stierl M, Penzkofer A, Kennis JT, Hegemann P, Mathes T (2014) Key residues for the light regulation of the blue light-activated adenylyl cyclase from Beggiatoa sp. Biochemistry 53(31):5121–5130. https://doi.org/10.1021/bi500479v

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenichi Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Luyben, T.T., Rai, J., Zhou, B., Li, H., Okamoto, K. (2024). Two-Photon FRET/FLIM Imaging of Cerebral Neurons. In: Nagata, Ki. (eds) Cerebral Cortex Development. Methods in Molecular Biology, vol 2794. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3810-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3810-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3809-5

  • Online ISBN: 978-1-0716-3810-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics