Skip to main content

Contracting the Host Range of Bacteriophage T7 Using a Continuous Evolution System

  • Protocol
  • First Online:
Phage Engineering and Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2793))

Abstract

Bacteriophage T7 is an intracellular virus that recognizes its host via tail and tail fiber proteins known as receptor-binding proteins (RBPs). The RBPs attach to a specific lipopolysaccharide (LPS) displayed on the host. While there are various reports of phage host range expansion resulting from mutations in the RBP encoding genes, there is little evidence for contraction of host range. Notably, most experimental systems have not monitored changes in host range in the presence of several hosts simultaneously. Here, we use a continuous evolution system to show that T7 phages grown in the presence of five restrictive strains and one permissive host, each with a different LPS, gradually cease to recognize the restrictive strains. Remarkably, this result was obtained in experiments with six different permissive hosts. The altered specificity is due to mutations in the RBPs as determined by gene sequencing. The results of using this system demonstrate a major role for RBPs in restricting the range of futile infections, and this process can be harnessed to reduce the host range in applications such as recognition and elimination of a specific bacterial serotype by bacteriophages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hyman P, Abedon ST (2010) Bacteriophage host range and bacterial resistance. Adv Appl Microbiol 70:217–248

    Article  CAS  PubMed  Google Scholar 

  2. Barrangou R et al (2007) CRISPR provides acquired resistance against viruses in prokaryotes. Science 315(5819):1709–1712

    Article  CAS  PubMed  Google Scholar 

  3. Bertani G, Weigle JJ (1953) Host controlled variation in bacterial viruses. J Bacteriol 65(2):113–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Smith SG et al (2007) A molecular Swiss army knife: OmpA structure, function and expression. FEMS Microbiol Lett 273(1):1–11

    Article  CAS  PubMed  Google Scholar 

  5. Fister S et al (2016) Influence of environmental factors on phage-bacteria interaction and on the efficacy and infectivity of phage P100. Front Microbiol 7:1152

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kerby GP, Gowdy RA et al (1949) Purification pH stability and sedimentation properties of the T7 bacteriophage of Escherichia coli. J Immunol 63(1):93–107

    Article  CAS  PubMed  Google Scholar 

  7. Yosef I et al (2017) Extending the host range of bacteriophage particles for DNA transduction. Mol Cell 66(5):721–728.e3

    Article  CAS  PubMed  Google Scholar 

  8. Yu P et al (2016) Isolation of polyvalent bacteriophages by sequential multiple-host approaches. Appl Environ Microbiol 82(3):808–815

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zborowsky S, Lindell D (2019) Resistance in marine cyanobacteria differs against specialist and generalist cyanophages. Proc Natl Acad Sci USA 116(34):16899–16908

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Meyer JR et al (2016) Ecological speciation of bacteriophage lambda in allopatry and sympatry. Science 354(6317):1301–1304

    Article  CAS  PubMed  Google Scholar 

  11. Heineman RH, Springman R, Bull JJ (2008) Optimal foraging by bacteriophages through host avoidance. Am Nat 171(4):E149–E157

    Article  PubMed  Google Scholar 

  12. González-García VA et al (2015) Characterization of the initial steps in the T7 DNA ejection process. Bacteriophage 5(3):e1056904

    Article  PubMed  PubMed Central  Google Scholar 

  13. Baba T et al (2006) Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006.0008

    Article  PubMed  PubMed Central  Google Scholar 

  14. Qimron U et al (2006) Genomewide screens for Escherichia coli genes affecting growth of T7 bacteriophage. Proc Natl Acad Sci USA 103(50):19039–19044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Enfors S-O (2011) Continuous fermentation. In: Fermentation process engineering. Royal Institute of Technology, Stockholm, pp 55–70

    Google Scholar 

  16. Lenski RE, Levin BR (1985) Constraints on the coevolution of bacteria and virulent phage: a model, some experiments, and predictions for natural communities. Am Nat 125(4):585–602

    Article  Google Scholar 

  17. Esvelt KM, Carlson JC, Liu DR (2011) A system for the continuous directed evolution of biomolecules. Nature 472:499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Badran AH et al (2016) Continuous evolution of bacillus thuringiensis toxins overcomes insect resistance. Nature 533(7601):58–63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Holtzman T et al (2020) A continuous evolution system for contracting the host range of bacteriophage T7. Sci Rep 10(1):307

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mark DF, Richardson CC (1976) Escherichia coli thioredoxin: a subunit of bacteriophage T7 DNA polymerase. Proc Natl Acad Sci USA 73(3):780–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kropinski AM et al (2009) Enumeration of bacteriophages by double agar overlay plaque assay. Methods Mol Biol 501

    Google Scholar 

  22. Manor M, Qimron U (2017) Selection of genetically modified bacteriophages using the CRISPR-Cas system. Bio Protocol 7(15)

    Google Scholar 

  23. Datsenko KA, Wanner BL (2000) One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 97(12):6640–6645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

UQ is supported by the European Research Council—Horizon 2020 research and innovation program, grant no. 818878.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tzvi Holtzman or Udi Qimron .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holtzman, T., Nechooshtan, R., Yosef, I., Qimron, U. (2024). Contracting the Host Range of Bacteriophage T7 Using a Continuous Evolution System. In: Peng, H., Liu, J., Chen, I.A. (eds) Phage Engineering and Analysis. Methods in Molecular Biology, vol 2793. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3798-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3798-2_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3797-5

  • Online ISBN: 978-1-0716-3798-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics