Skip to main content

Studying Plant Specialized Metabolites Using Computational Metabolomics Strategies

  • Protocol
  • First Online:
Plant Functional Genomics

Abstract

Plant specialized metabolites have diversified vastly over the course of plant evolution, and they are considered key players in complex interactions between plants and their environment. The chemical diversity of these metabolites has been widely explored and utilized in agriculture and crop enhancement, the food industry, and drug development, among other areas. However, the immensity of the plant metabolome can make its exploration challenging. Here we describe a protocol for exploring plant specialized metabolites that combines high-resolution mass spectrometry and computational metabolomics strategies, including molecular networking, identification of structural motifs, as well as prediction of chemical structures and metabolite classes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Weng J-K, Philippe RN, Noel JP (2012) The rise of chemodiversity in plants. Science 336:1667–1670. https://doi.org/10.1126/science.1217411

    Article  CAS  PubMed  Google Scholar 

  2. Jorge TF, Rodrigues JA, Caldana C et al (2016) Mass spectrometry-based plant metabolomics: metabolite responses to abiotic stress. Mass Spectrom Rev 35:620–649. https://doi.org/10.1002/mas.21449

    Article  CAS  PubMed  Google Scholar 

  3. Fiehn O (2002) Metabolomics the link between genotypes and phenotypes. Plant Mol Biol 48:155–171. https://doi.org/10.1023/A:1013713905833

    Article  CAS  PubMed  Google Scholar 

  4. Tsugawa H, Rai A, Saito K, Nakabayashi R (2021) Metabolomics and complementary techniques to investigate the plant phytochemical cosmos. Nat Prod Rep 38:1729–1759. https://doi.org/10.1039/D1NP00014D

    Article  CAS  PubMed  Google Scholar 

  5. Newman DJ, Cragg GM (2020) Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J Nat Prod 83:770–803. https://doi.org/10.1021/acs.jnatprod.9b01285

    Article  CAS  PubMed  Google Scholar 

  6. Ahmed N, Alam M, Saeed M et al (2021) Botanical insecticides are a non-toxic alternative to conventional pesticides in the control of insects and pests. In: Global decline of insects. IntechOpen, London, pp 1–19

    Google Scholar 

  7. Sharmeen JB, Mahomoodally FM, Zengin G, Maggi F (2021) Essential oils as natural sources of fragrance compounds for cosmetics and cosmeceuticals. Molecules 26:666. https://doi.org/10.3390/molecules26030666

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kallscheuer N, Classen T, Drepper T, Marienhagen J (2019) Production of plant metabolites with applications in the food industry using engineered microorganisms. Curr Opin Biotechnol 56:7–17. https://doi.org/10.1016/j.copbio.2018.07.008

    Article  CAS  PubMed  Google Scholar 

  9. Kessler A, Kalske A (2018) Plant secondary metabolite diversity and species interactions. Annu Rev Ecol Evol Syst 49:115. https://doi.org/10.1146/annurev-ecolsys-110617-062406

    Article  Google Scholar 

  10. Verpoorte R, Choi YH, Mustafa NR, Kim HK (2008) Metabolomics: back to basics. Phytochem Rev 7:525–537. https://doi.org/10.1007/s11101-008-9091-7

    Article  CAS  Google Scholar 

  11. Alseekh S, Aharoni A, Brotman Y et al (2021) Mass spectrometry-based metabolomics: a guide for annotation, quantification and best reporting practices. Nat Methods 18:747–756. https://doi.org/10.1038/s41592-021-01197-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Oikawa A, Otsuka T, Jikumaru Y et al (2011) Effects of freeze-drying of samples on metabolite levels in metabolome analyses. J Sep Sci 34:3561–3567. https://doi.org/10.1002/jssc.201100466

    Article  CAS  PubMed  Google Scholar 

  13. Kim HK, Verpoorte R (2010) Sample preparation for plant metabolomics. Phytochem Anal 21:4–13. https://doi.org/10.1002/pca.1188

    Article  CAS  PubMed  Google Scholar 

  14. Zhang Q-W, Lin L-G, Ye W-C (2018) Techniques for extraction and isolation of natural products: a comprehensive review. Chin Med 13:20. https://doi.org/10.1186/s13020-018-0177-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Camel V (2014) Extraction methodologies in plants: general introduction. In: Encyclopedia of analytical chemistry. Elsevier, Amsterdam, pp 1–26

    Google Scholar 

  16. Fiehn O, Wohlgemuth G, Scholz M et al (2008) Quality control for plant metabolomics: reporting MSI-compliant studies. Plant J 53:691–704. https://doi.org/10.1111/j.1365-313X.2007.03387.x

    Article  CAS  PubMed  Google Scholar 

  17. Sumner LW, Amberg A, Barrett D et al (2007) Proposed minimum reporting standards for chemical analysis chemical analysis working group (CAWG) metabolomics standards initiative (MSI). Metabolomics 3:211–221. https://doi.org/10.1007/s11306-007-0082-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Goodacre R, Broadhurst D, Smilde AK et al (2007) Proposed minimum reporting standards for data analysis in metabolomics. Metabolomics 3:231–241. https://doi.org/10.1007/s11306-007-0081-3

    Article  CAS  Google Scholar 

  19. Fiehn O, Sumner LW, Rhee SY et al (2007) Minimum reporting standards for plant biology context information in metabolomic studies. Metabolomics 3:195–201. https://doi.org/10.1007/s11306-007-0068-0

    Article  CAS  Google Scholar 

  20. Vinay CM, Udayamanoharan SK, Prabhu Basrur N et al (2021) Current analytical technologies and bioinformatic resources for plant metabolomics data. Plant Biotechnol Rep 15:561–572. https://doi.org/10.1007/s11816-021-00703-3

    Article  CAS  Google Scholar 

  21. Robards K, Ryan D (2022) High performance liquid chromatography: separations. In: Robards K, Ryan D (eds) Principles and practice of modern chromatographic methods, 2nd edn. Academic Press, Amsterdam, pp 283–336

    Chapter  Google Scholar 

  22. Tolstikov VV, Fiehn O (2002) Analysis of highly polar compounds of plant origin: combination of hydrophilic interaction chromatography and electrospray ion trap mass spectrometry. Anal Biochem 301:298–307. https://doi.org/10.1006/abio.2001.5513

    Article  CAS  PubMed  Google Scholar 

  23. Antonio C, Larson T, Gilday A et al (2008) Hydrophilic interaction chromatography/electrospray mass spectrometry analysis of carbohydrate-related metabolites from Arabidopsis thaliana leaf tissue. Rapid Commun Mass Spectrom 22:1399–1407. https://doi.org/10.1002/rcm.3519

    Article  CAS  PubMed  Google Scholar 

  24. Dührkop K, Fleischauer M, Ludwig M et al (2019) SIRIUS 4: a rapid tool for turning tandem mass spectra into metabolite structure information. Nat Methods 16:299–302. https://doi.org/10.1038/s41592-019-0344-8

    Article  CAS  PubMed  Google Scholar 

  25. da Silva RR, Dorrestein PC, Quinn RA (2015) Illuminating the dark matter in metabolomics. Proc Natl Acad Sci U S A 112:12549–12550

    Article  PubMed  PubMed Central  Google Scholar 

  26. Bittremieux W, Wang M, Dorrestein PC (2022) The critical role that spectral libraries play in capturing the metabolomics community knowledge. Metabolomics 18:94. https://doi.org/10.1007/s11306-022-01947-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wang M, Carver JJ, Phelan VV et al (2016) Sharing and community curation of mass spectrometry data with global natural products social molecular networking. Nat Biotechnol 34:828–837. https://doi.org/10.1038/nbt.3597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Quinn RA, Nothias L-F, Vining O et al (2017) Molecular networking as a drug discovery, drug metabolism, and precision medicine strategy. Trends Pharmacol Sci 38:143–154. https://doi.org/10.1016/j.tips.2016.10.011

    Article  CAS  PubMed  Google Scholar 

  29. van der Hooft JJJ, Wandy J, Barrett MP et al (2016) Topic modeling for untargeted substructure exploration in metabolomics. Proc Natl Acad Sci U S A 113:13738–13743. https://doi.org/10.1073/pnas.1608041113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. de Jonge NF, Louwen JJR, Chekmeneva E et al (2023) MS2Query: reliable and scalable MS2 mass spectra-based analogue search. Nat Commun 14:1752. https://doi.org/10.1038/s41467-023-37446-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Dührkop K, Shen H, Meusel M et al (2015) Searching molecular structure databases with tandem mass spectra using CSI:FingerID. Proc Natl Acad Sci U S A 112:12580–12585. https://doi.org/10.1073/pnas.1509788112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Dührkop K, Nothias L-F, Fleischauer M et al (2021) Systematic classification of unknown metabolites using high-resolution fragmentation mass spectra. Nat Biotechnol 39:462–471. https://doi.org/10.1038/s41587-020-0740-8

    Article  CAS  PubMed  Google Scholar 

  33. Ernst M, Nothias L-F, van der Hooft JJJ et al (2019) Assessing specialized metabolite diversity in the cosmopolitan plant genus euphorbia L. Front Plant Sci 10:846. https://doi.org/10.3389/fpls.2019.00846

    Article  PubMed  PubMed Central  Google Scholar 

  34. Silva E, da Graça JP, Porto C et al (2020) Unraveling Asian soybean rust metabolomics using mass spectrometry and molecular networking approach. Sci Rep 10:138. https://doi.org/10.1038/s41598-019-56782-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Kang KB, Ernst M, van der Hooft JJJ et al (2019) Comprehensive mass spectrometry-guided phenotyping of plant specialized metabolites reveals metabolic diversity in the cosmopolitan plant family Rhamnaceae. Plant J 98:1134–1144. https://doi.org/10.1111/tpj.14292

    Article  CAS  PubMed  Google Scholar 

  36. Chambers MC, Maclean B, Burke R et al (2012) A cross-platform toolkit for mass spectrometry and proteomics. Nat Biotechnol 30:918–920. https://doi.org/10.1038/nbt.2377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Schmid R, Heuckeroth S, Korf A et al (2023) Integrative analysis of multimodal mass spectrometry data in MZmine 3. Nat Biotechnol 41:447. https://doi.org/10.1038/s41587-023-01690-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13:2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nothias L-F, Petras D, Schmid R et al (2020) Feature-based molecular networking in the GNPS analysis environment. Nat Methods 17:905–908. https://doi.org/10.1038/s41592-020-0933-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Allard P-M, Gaudry A, Quirós-Guerrero L-M et al (2022) Open and reusable annotated mass spectrometry dataset of a chemodiverse collection of 1,600 plant extracts. Gigascience 12:giac124. https://doi.org/10.1093/gigascience/giac124

    Article  PubMed  Google Scholar 

  41. Mutabdžija L, Myoli A, de Jonge NF et al (2023) Ranunculales supplementary data. Zenodo. https://doi.org/10.5281/ZENODO.7784920

  42. Rogers S, Ong CW, Wandy J et al (2019) Deciphering complex metabolite mixtures by unsupervised and supervised substructure discovery and semi-automated annotation from MS/MS spectra. Faraday Discuss 218:284–302. https://doi.org/10.1039/c8fd00235e

    Article  CAS  PubMed  Google Scholar 

  43. Ernst M, Kang KB, Caraballo-Rodríguez AM et al (2019) MolNetEnhancer: enhanced molecular networks by integrating metabolome mining and annotation tools. Meta 9:144. https://doi.org/10.3390/metabo9070144

    Article  CAS  Google Scholar 

  44. Hoffmann MA, Nothias L-F, Ludwig M et al (2022) High-confidence structural annotation of metabolites absent from spectral libraries. Nat Biotechnol 40:411–421. https://doi.org/10.1038/s41587-021-01045-9

    Article  CAS  PubMed  Google Scholar 

  45. Wandy J, Zhu Y, van der Hooft JJJ et al (2018) Ms2lda.org: web-based topic modelling for substructure discovery in mass spectrometry. Bioinformatics 34:317–318. https://doi.org/10.1093/bioinformatics/btx582

    Article  CAS  PubMed  Google Scholar 

  46. Guo J, Huan T (2020) Comparison of full-scan, data-dependent, and data-independent acquisition modes in liquid chromatography-mass spectrometry based untargeted metabolomics. Anal Chem 92:8072–8080. https://doi.org/10.1021/acs.analchem.9b05135

    Article  CAS  PubMed  Google Scholar 

  47. Davies V, Wandy J, Weidt S et al (2021) Rapid development of improved data-dependent acquisition strategies. Anal Chem 93:5676–5683. https://doi.org/10.1021/acs.analchem.0c03895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. mzML 1.1.0 Specification. https://www.psidev.info/mzML. Accessed 2 Feb 2023

  49. Djoumbou Feunang Y, Eisner R, Knox C et al (2016) ClassyFire: automated chemical classification with a comprehensive, computable taxonomy. J Cheminform 8:61. https://doi.org/10.1186/s13321-016-0174-y

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

T.P. is supported by the Czech Science Foundation (GA CR) grant 21-11563 M and by the European Union’s Horizon 2020 research and innovation program under the Marie Skłodowska-Curie grant agreement 891397. L.M. is co-financed by the Governments of Czechia, Hungary, Poland, and Slovakia through Visegrad Grant 52210524 from the International Visegrad Fund. We would like to thank Fred Rooks for editing this manuscript. Figures were created using https://biorender.com. J.J.J.v.d.H. declares that he is member of the Scientific Advisory Board of NAICONS Srl., Milano, Italy, and consulting for Corteva Agriscience, Indianapolis, IN, USA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tomáš Pluskal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mutabdžija, L. et al. (2024). Studying Plant Specialized Metabolites Using Computational Metabolomics Strategies. In: Maghuly, F. (eds) Plant Functional Genomics. Methods in Molecular Biology, vol 2788. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3782-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3782-1_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3781-4

  • Online ISBN: 978-1-0716-3782-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics