Skip to main content

Repurposing Decellularized Lung to Generate Vascularized Fat

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2783))

  • 430 Accesses

Abstract

Conventional therapies to address critically sized defects in subcutaneous adipose tissue remain a reconstructive challenge for surgeons, largely due to the lack of graft pre-vascularization. Adipose tissue relies on a dense microvasculature network to deliver nutrients, oxygen, nonadipose tissue-derived growth factors, cytokines, and hormones, as well as transporting adipose tissue-derived endocrine signals to other organ systems. This chapter addresses these vascularization issues by combining decellularized lung matrices with a step-wise seeding of patient-specific adipose-derived stem cells and endothelial cells to develop large-volume, perfusable, and pre-vascularized adipose grafts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bellas E, Marra KG, Kaplan DL (2013) Sustainable three-dimensional tissue model of human adipose tissue. Tissue Eng Part C Methods 19(10):745–754

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Shih L, Davis MJ, Winocour SJ (2020) The science of fat grafting. Semin Plast Surg 34(01):005–010

    Article  Google Scholar 

  3. Jain RK, Au P, Tam J et al (2005) Engineering vascularized tissue. Nat Biotechnol 23(7):821–823

    Article  CAS  PubMed  Google Scholar 

  4. Gui L, Niklason LE (2014) Vascular tissue engineering: building perfusable vasculature for implantation. Curr Opin Chem Eng 3:68–74

    Article  PubMed  PubMed Central  Google Scholar 

  5. Auger FA, Gibot L, Lacroix D (2013) The pivotal role of vascularization in tissue engineering. Annu Rev Biomed Eng 15(1):177–200

    Article  CAS  PubMed  Google Scholar 

  6. Langer S, Sinitsina I, Biberthaler P et al (2002) Revascularization of transplanted adipose tissue: a study in the dorsal skinfold chamber of hamsters. Ann Plast Surg 48(1):53–59

    Article  PubMed  Google Scholar 

  7. Clark AM, Sousa KM, Chisolm CN et al (2010) Reversibly sealed multilayer microfluidic device for integrated cell perfusion and on-line chemical analysis of cultured adipocyte secretions. Anal Bioanal Chem 397(7):2939–2947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Clark AM, Sousa KM, Jennings C et al (2009) Continuous-flow enzyme assay on a microfluidic chip for monitoring glycerol secretion from cultured adipocytes. Anal Chem 81(6):2350–2356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Godwin LA, Brooks JC, Hoepfner LD et al (2015) A microfluidic interface for the culture and sampling of adiponectin from primary adipocytes. Analyst 140(4):1019–1025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Tanataweethum N, Zelaya A, Yang F et al (2018) Establishment and characterization of a primary murine adipose tissue-chip. Biotechnol Bioeng 115(8):1979–1987

    Article  CAS  PubMed  Google Scholar 

  11. Loskill P, Sezhian T, Tharp KM et al (2017) WAT-on-a-chip: a physiologically relevant microfluidic system incorporating white adipose tissue. Lab Chip 17(9):1645–1654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Dugan CE, Cawthorn WP, MacDougald OA et al (2014) Multiplexed microfluidic enzyme assays for simultaneous detection of lipolysis products from adipocytes. Anal Bioanal Chem 406(20):4851–4859

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Lai N, Sims JK, Jeon NL et al (2012) Adipocyte induction of preadipocyte differentiation in a gradient chamber. Tissue Eng Part C Methods 18(12):958–967

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cao Y (2013) Angiogenesis and vascular functions in modulation of obesity, adipose metabolism, and insulin sensitivity. Cell Metab 18(4):478–489

    Article  CAS  PubMed  Google Scholar 

  15. Fukumura D, Ushiyama A, Duda DG et al (2003) Paracrine regulation of angiogenesis and adipocyte differentiation during in vivo adipogenesis. Circ Res 93(9):E88–E97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Borges J, Muller MC, Momeni A et al (2007) In vitro analysis of the interactions between preadipocytes and endothelial cells in a 3D fibrin matrix. Minim Invasive Ther Allied Technol 16(3):141–148

    Article  PubMed  Google Scholar 

  17. Gupta RK, Arany Z, Seale P et al (2010) Transcriptional control of preadipocyte determination by Zfp423. Nature 464(7288):619–U187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tang W, Zeve D, Suh JM et al (2008) White fat progenitor cells reside in the adipose vasculature. Science 322(5901):583–586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Srokowski EM, Woodhouse KA (2017) 2.20 decellularized scaffolds. In: Ducheyne P (ed) Comprehensive biomaterials II. Elsevier, Oxford, pp 452–470

    Chapter  Google Scholar 

  20. Gilpin A, Yang Y (2017) Decellularization strategies for regenerative medicine: from processing techniques to applications. Biomed Res Int 2017:9831534

    Article  PubMed  PubMed Central  Google Scholar 

  21. Fathi I, Imura T, Inagaki A et al (2021) Decellularized whole-organ pre-vascularization: a novel approach for organogenesis. Front Bioeng Biotechnol 9:756755

    Article  PubMed  PubMed Central  Google Scholar 

  22. DeBari MK, Ng WH, Griffin MD et al (2021) Engineering a 3D vascularized adipose tissue construct using a decellularized lung matrix. Biomimetics 6(3):52

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. West JB (2009) Comparative physiology of the pulmonary blood-gas barrier: the unique avian solution. Am J Physiol Regul Integr Comp Physiol 297(6):R1625–R1634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Daya S, Loughlin AJ, Macqueen HA (2007) Culture and differentiation of preadipocytes in two-dimensional and three-dimensional in vitro systems. Differentiation 75(5):360–370

    Article  CAS  PubMed  Google Scholar 

  25. Ballermann BJ, Dardik A, Eng E et al (1998) Shear stress and the endothelium. Kidney Int 54:S100–S108

    Article  Google Scholar 

  26. Bora P, Majumdar AS (2017) Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation. Stem Cell Res Ther 8(1):145

    Article  PubMed  PubMed Central  Google Scholar 

  27. Gilbert TW, Sellaro TL, Badylak SF (2006) Decellularization of tissues and organs. Biomaterials 27(19):3675–3683

    CAS  PubMed  Google Scholar 

  28. Bernard MP, Chu ML, Myers JC et al (1983) Nucleotide sequences of complementary deoxyribonucleic acids for the pro.alpha.1 chain of human type I procollagen. Statistical evaluation of structures that are conserved during evolution. Biochemistry 22(22):5213–5223

    Article  CAS  PubMed  Google Scholar 

  29. Constantinou CD, Jimenez SA (1991) Structure of cDNAs encoding the triple-helical domain of murine α2 (VI) collagen chain and comparison to human and chick homologues. Use of polymerase chain reaction and partially degenerate oligonucleotides for generation of novel cDNA clones. Matrix 11(1):1–9

    Article  CAS  PubMed  Google Scholar 

  30. Badylak SF, Taylor D, Uygun K (2011) Whole-organ tissue engineering: decellularization and recellularization of three-dimensional matrix scaffolds. Annu Rev Biomed Eng 13:27–53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Badylak SF (2004) Xenogeneic extracellular matrix as a scaffold for tissue reconstruction. Transpl Immunol 12(3–4):367–377

    Article  CAS  PubMed  Google Scholar 

  32. Badylak SF (2014) Decellularized allogeneic and xenogeneic tissue as a bioscaffold for regenerative medicine: factors that influence the host response. Ann Biomed Eng 42(7):1517–1527

    Article  PubMed  Google Scholar 

  33. Badylak SF, Gilbert TW (2008) Immune response to biologic scaffold materials. Semin Immunol 20(2):109–116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Singelyn JM, Christman KL (2010) Injectable materials for the treatment of myocardial infarction and heart failure: the promise of decellularized matrices. J Cardiovasc Transl Res 3(5):478–486

    Article  PubMed  PubMed Central  Google Scholar 

  35. Lee SJ, Lee CR, Kim KJ et al (2020) Optimal condition of isolation from an adipose tissue-derived stromal vascular fraction for the development of automated systems. Tissue Eng Regen Med 17(2):203–208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ren X, Evangelista-Leite D, Wu T et al (2018) Metabolic glycan labeling and chemoselective functionalization of native biomaterials. Biomaterials 182:127–134

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosalyn D. Abbott .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Huff, L.K., Ling, Z., DeBari, M.K., Ren, X., Abbott, R.D. (2024). Repurposing Decellularized Lung to Generate Vascularized Fat. In: Gimble, J., Bunnell, B., Frazier, T., Sanchez, C. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 2783. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3762-3_18

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3762-3_18

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3761-6

  • Online ISBN: 978-1-0716-3762-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics