Skip to main content

Preparation of Decellularized Amniotic Membrane and Adipose-Derived Stromal/Stem Cell Seeding

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2783))

  • 189 Accesses

Abstract

Amniotic membrane, being part of the placenta, is discarded as medical waste after childbirth. It can be decellularized to convert it into an acellular material while retaining the extracellular matrix. Such amniotic membrane grafts support stem cell adhesion, growth, and proliferation. These properties make it a useful candidate to be used as a bio-scaffold in regenerative medicine. This chapter describes a method for the decellularization of the amniotic membrane. Furthermore, the method for seeding adipose-derived stem cells on the decellularized amniotic membrane is described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fénelon M, Catros S, Meyer C et al (2021) Applications of human amniotic membrane for tissue engineering. Membranes 11(6):387

    Article  PubMed  PubMed Central  Google Scholar 

  2. Deus IA, Mano JF, Custódio CAJAB (2020) Perinatal tissues and cells in tissue engineering and regenerative medicine. Acta Biomater 110:1–14

    Article  CAS  PubMed  Google Scholar 

  3. Wee SW, Choi SU, Kim JC (2015) Deep anterior lamellar keratoplasty using irradiated acellular cornea with amniotic membrane transplantation for intractable ocular surface diseases. Korean J Ophthalmol 29(2):79–85

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nouri M, Ebrahimi M, Bagheri T et al (2018) Healing effects of dried and acellular human amniotic membrane and mepitelas for coverage of skin graft donor areas; a randomized clinical trial. Bull Emerg Trauma 6(3):195

    Article  PubMed  PubMed Central  Google Scholar 

  5. Fairbairn NG, Randolph MA, Redmond RW et al (2014) The clinical applications of human amnion in plastic surgery. J Plast Reconstr Aesthet Surg 67(5):662–675

    Article  CAS  PubMed  Google Scholar 

  6. Schmiedova I, Dembickaja A, Kiselakova L et al (2021) Using of amniotic membrane derivatives for the treatment of chronic wounds. Membranes 11(12):941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Tabriz AG (2022) Allogeneic, xenographic, synthetic, bioengineered, and composite products for wound healing and soft tissue grafting. Healthy Blue Surg

    Google Scholar 

  8. Fenelon M, Etchebarne M, Siadous R et al (2020) Assessment of fresh and preserved amniotic membrane for guided bone regeneration in mice. J Biomed Mater Res A 108(10):2044–2056

    Article  CAS  PubMed  Google Scholar 

  9. Scarritt ME, Pashos NC, Bunnell BA et al (2015) A review of cellularization strategies for tissue engineering of whole organs. Front Bioeng Biotechnol 3:43

    Article  PubMed  PubMed Central  Google Scholar 

  10. Taghiabadi E, Beiki B, Aghdami N et al. (2019) Cultivation of adipose-derived stromal cells on intact amniotic membrane-based scaffold for skin tissue engineering. In: Skin stem cells: methods and protocols, p 201–210

    Google Scholar 

  11. Tsuji W, Rubin JP, KGJW M (2014) Adipose-derived stem cells: implications in tissue regeneration. World J Stem Cells 6(3):312

    Article  PubMed  PubMed Central  Google Scholar 

  12. Si Z, Wang X, Sun C et al (2019) Adipose-derived stem cells: sources, potency, and implications for regenerative therapies. Biomed Pharmacother 114:108765

    Article  CAS  PubMed  Google Scholar 

  13. Bhattacharjee M, Escobar Ivirico JL, Kan H-M et al (2022) Injectable amnion hydrogel-mediated delivery of adipose-derived stem cells for osteoarthritis treatment. Proc Natl Acad Sci 119(4):e2120968119

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wu P-H, Chung H-Y, Wang J-H et al (2016) Amniotic membrane and adipose-derived stem cell co-culture system enhances bone regeneration in a rat periodontal defect model. J Formos Med Assoc 115(3):186–194

    Article  CAS  PubMed  Google Scholar 

  15. Khorramirouz R, Kameli SM, Fendereski K et al (2019) Evaluating the efficacy of tissue-engineered human amniotic membrane in the treatment of myocardial infarction. Regen Med 14(2):113–126

    Article  CAS  PubMed  Google Scholar 

  16. Sánchez-Sánchez R, BREnA-MoLInA A, MARTínEz-LóPEz V et al (2015) Generation of two biological wound dressings as a potential delivery system of human adipose-derived mesenchymal stem cells. ASAIO J 61(6):718

    Article  PubMed  PubMed Central  Google Scholar 

  17. Zhang T, Yam GH-F, Riau AK et al (2013) The effect of amniotic membrane de-epithelialization method on its biological properties and ability to promote limbal epithelial cell culture. Invest Ophthalmol Vis Sci 54(4):3072–3081

    Article  CAS  PubMed  Google Scholar 

  18. Zhang J, Liu Z, Li Y et al (2020) FGF-2-induced human amniotic mesenchymal stem cells seeded on a human acellular amniotic membrane scaffold accelerated tendon-to-bone healing in a rabbit extra-articular model. Stem Cells Int 2020:1–14

    Article  CAS  Google Scholar 

  19. Davis GE, Blaker SN, Engvall E et al (1987) Human amnion membrane serves as a substratum for growing axons in vitro and in vivo. Science 236(4805):1106–1109

    Article  CAS  PubMed  Google Scholar 

  20. Brown JJ, Papaioannou VEJD (1993) Ontogeny of hyaluronan secretion during early mouse development. Development 117(2):483–492

    Article  CAS  PubMed  Google Scholar 

  21. Kiernan JJMT (1999) Strategies for preventing detachment of sections from glass slides. Microscopy Today 7(6):20–24

    Article  Google Scholar 

  22. Mohiuddin OA, O’Donnell BT, Poche JN et al (2019) Human adipose-derived hydrogel characterization based on in vitro ASC biocompatibility and differentiation. Stem Cells Int 2019:1–13

    Article  Google Scholar 

  23. Khalil S, El-Badri N, El-Mokhtaar M et al (2016) A cost-effective method to assemble biomimetic 3D cell culture platforms. PLoS One 11(12):e0167116

    Article  PubMed  PubMed Central  Google Scholar 

  24. Motamed M, Sadr Z, Valojerdi M et al (2017) Tissue engineered human amniotic membrane application in mouse ovarian follicular culture. Ann Biomed Eng 45:1664–1675

    Article  CAS  PubMed  Google Scholar 

  25. Jin CZ, Park SR, Choi BH et al (2007) Human amniotic membrane as a delivery matrix for articular cartilage repair. Tissue Eng 13(4):693–702

    Article  CAS  PubMed  Google Scholar 

  26. Sangwan VS, Vemuganti GK, Singh S et al (2003) Successful reconstruction of damaged ocular outer surface in humans using limbal and conjuctival stem cell culture methods. Biosci Rep 23(4):169–174

    Article  CAS  PubMed  Google Scholar 

  27. Crapo PM, Gilbert TW, Badylak SFJB (2011) An overview of tissue and whole organ decellularization processes. Biomaterials 32(12):3233–3243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Lakkireddy C, Vishwakarma SK, Raju N et al (2021) Fabrication of decellularized amnion and chorion scaffolds to develop bioengineered cell-laden constructs. Cell Mol Bioeng 15:1–14

    Google Scholar 

  29. Oh JM, Gangadaran P, Rajendran RL et al (2022) Different expression of thyroid-specific proteins in thyroid cancer cells between 2-dimensional (2D) and 3-dimensional (3D) culture environment. Cell 11(22):3559

    Article  CAS  Google Scholar 

  30. Janjić K, Lilaj B, Moritz A et al (2018) Formation of spheroids by dental pulp cells in the presence of hypoxia and hypoxia mimetic agents. Int Endod J 51:e146–e156

    Article  PubMed  Google Scholar 

  31. Anderson DE, Markway BD, Weekes KJ et al (2018) Physioxia promotes the articular chondrocyte-like phenotype in human chondroprogenitor-derived self-organized tissue. Tissue Eng A 24(3–4):264–274

    Article  CAS  Google Scholar 

  32. Frontini-López YR, Rivera L, Aldana AA et al (2023) Human adipose mesenchymal stromal cells growing into PCL-nHA electrospun scaffolds undergo hypoxia adaptive ultrastructural changes. Biotechnol J 18:2200413

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omair A. Mohiuddin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tauseef, H., Ahmed, K., Salim, A., Mohiuddin, O.A. (2024). Preparation of Decellularized Amniotic Membrane and Adipose-Derived Stromal/Stem Cell Seeding. In: Gimble, J., Bunnell, B., Frazier, T., Sanchez, C. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 2783. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3762-3_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3762-3_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3761-6

  • Online ISBN: 978-1-0716-3762-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics