Skip to main content

Analysis of Biomechanical Properties of Adipose-Derived Hydrogels for Adipose-Derived Stromal/Stem Cell-Based Hydrogel Culture

  • Protocol
  • First Online:
Adipose-Derived Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2783))

  • 213 Accesses

Abstract

With the increase in decellularization of different tissue sources, an understanding of the viscoelastic properties of these soft materials is important for determining practical applications. The purpose of this chapter is to better define a series of experiments to profile important rheological properties for adipose-based hydrogels. While there are numerous mechanical characterizations that are done experimentally, the protocol outlined in this chapter provides a step-wise approach to determine the gelation characteristics and native hydrogel network properties. A more complete understanding of adipose-derived hydrogel mechanical properties would provide vital information for downstream applicability in fields such as disease modeling or soft tissue regeneration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sivashanmugam A, Arun Kumar R, Vishnu Priya M et al (2015) An overview of injectable polymeric hydrogels for tissue engineering. Eur Polym J 72:543–565

    Article  CAS  Google Scholar 

  2. Bashir S, Hina M, Iqbal J et al (2020) Fundamental concepts of hydrogels: synthesis, properties, and their applications. Polymers (Basel) 12(11):2702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Huskin G, Chen J, Davis T et al (2023) Tissue-engineered 3D in vitro disease models for high-throughput drug screening. Tissue Eng Regen Med:1–16

    Google Scholar 

  4. Lin X, Wang JL, Wu XY et al (2022) Marine-derived hydrogels for biomedical applications. Adv Funct Mater 33:2211323

    Article  Google Scholar 

  5. Hoshiba T (2019) Decellularized extracellular matrix for cancer research. Mater (Basel) 12(8):1311

    Article  CAS  Google Scholar 

  6. Fernandez-Perez J, Ahearne M (2019) The impact of decellularization methods on extracellular matrix derived hydrogels. Sci Rep 9(1):14933

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kokai LE, Sivak WN, Schilling BK et al (2020) Clinical evaluation of an off-the-shelf allogeneic adipose matrix for soft tissue reconstruction. Plast Reconstr Surg Glob Open 8(1):e2574

    Article  PubMed  PubMed Central  Google Scholar 

  8. Belgodere JA, Zamin SA, Kalinoski RM et al (2019) Modulating mechanical properties of collagen-lignin composites. ACS Appl Bio Mater 2(8):3562–3572

    Article  CAS  PubMed  Google Scholar 

  9. Balaji S, Short WD, Padon BW et al (2023) Injectable antioxidant and oxygen-releasing lignin composites to promote wound healing. ACS Appl Mater Interfaces 15(15):18639–18652

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Yoon H, Seo JK, Park TE (2023) Microphysiological system recapitulating the pathophysiology of adipose tissue in obesity. Acta Biomater 159:188–200

    Article  CAS  PubMed  Google Scholar 

  11. O’Halloran NA, Dolan EB, Kerin MJ et al (2018) Hydrogels in adipose tissue engineering-potential application in post-mastectomy breast regeneration. J Tissue Eng Regen Med 12(12):2234–2247

    Article  PubMed  Google Scholar 

  12. Hayes DJ, Gimble JM (2022) Developing a clinical grade human adipose decellularized biomaterial. Biomat Biosyst 7:100053

    CAS  Google Scholar 

  13. Alkhouli N, Mansfield J, Green E et al (2013) The mechanical properties of human adipose tissues and their relationships to the structure and composition of the extracellular matrix. Am J Physiol Endocrinol Metab 305(12):E1427–E1E35

    Article  CAS  PubMed  Google Scholar 

  14. Divoux A, Clément K (2011) Architecture and the extracellular matrix: the still unappreciated components of the adipose tissue. Obes Rev 12(5):e494–e503

    Article  CAS  PubMed  Google Scholar 

  15. Oyen ML (2013) Mechanical characterisation of hydrogel materials. Int Mater Rev 59(1):44–59

    Article  Google Scholar 

  16. Kloxin AM, Kloxin CJ, Bowman CN et al (2010) Mechanical properties of cellularly responsive hydrogels and their experimental determination. Adv Mater 22(31):3484–3494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Anseth KS, Bowman CN, Brannon-Peppas L (1996) Mechanical properties of hydrogels and their experimental determination. Biomaterials 17(17):1647–1657

    Article  CAS  PubMed  Google Scholar 

  18. Peppas NA, Huang Y, Torres-Lugo M et al (2000) Physicochemical foundations and structural design of hydrogels in medicine and biology. Annu Rev Biomed Eng 2(1):9–29

    Article  CAS  PubMed  Google Scholar 

  19. Akcay G, Luttge R (2021) Stiff-to-soft transition from glass to 3D hydrogel substrates in neuronal cell culture. Micromachines (Basel) 12(2):165

    Article  PubMed  Google Scholar 

  20. Eyckmans J, Boudou T, Yu X et al (2011) A hitchhiker’s guide to mechanobiology. Dev Cell 21(1):35–47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee S, Stanton AE, Tong X et al (2019) Hydrogels with enhanced protein conjugation efficiency reveal stiffness-induced YAP localization in stem cells depends on biochemical cues. Biomaterials 202:26–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Baroli B (2007) Hydrogels for tissue engineering and delivery of tissue-inducing substances. J Pharm Sci 96(9):2197–2223

    Article  CAS  PubMed  Google Scholar 

  23. Callister WD, Rethwisch DG (2007) Materials science and engineering: an introduction. Wiley, New York

    Google Scholar 

  24. Tabor D (2000) The hardness of metals. Oxford University Press, Oxford

    Book  Google Scholar 

  25. Zuidema JM, Rivet CJ, Gilbert RJ et al (2014) A protocol for rheological characterization of hydrogels for tissue engineering strategies. J Biomed Mater Res B Appl Biomater 102(5):1063–1073

    Article  PubMed  Google Scholar 

  26. Morrison FA (2001) Understanding rheology. Oxford University Press, Oxford

    Google Scholar 

  27. Ferry JD (1980) Viscoelastic properties of polymers. Wiley, New York

    Google Scholar 

  28. Mezger TG (2014) Applied rheology, 4th edn. Vincentz Network, Hanover

    Google Scholar 

  29. Mezger T (2020) The rheology handbook: for users of rotational and oscillatory rheometers. European Coatings

    Book  Google Scholar 

  30. Belgodere JA, Lassiter HR, Robinson JT et al (2023) Biomechanical and biological characterization of XGel, a human-derived hydrogel for stem cell expansion and tissue engineering. Adv Biol:2200332

    Google Scholar 

  31. Belgodere JA, Son D, Jeon B et al (2021) Attenuating fibrotic markers of patient-derived dermal fibroblasts by Thiolated lignin composites. ACS Biomater Sci Eng 7(6):2212–2218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge A. Belgodere .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Belgodere, J.A. (2024). Analysis of Biomechanical Properties of Adipose-Derived Hydrogels for Adipose-Derived Stromal/Stem Cell-Based Hydrogel Culture. In: Gimble, J., Bunnell, B., Frazier, T., Sanchez, C. (eds) Adipose-Derived Stem Cells. Methods in Molecular Biology, vol 2783. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3762-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3762-3_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3761-6

  • Online ISBN: 978-1-0716-3762-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics