Skip to main content

Surface Markers for the Identification of Cancer Stem Cells

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2777))

  • 313 Accesses

Abstract

Cancer stem cells have genetic and functional characteristics which can turn them resistant to standard cancer therapeutic targets. Identification of these cells is challenging and is done mainly by detecting the expression of antigens specific to stem cells. Currently, there is a significant number of surface markers available which can detect cancer stem cells by directly targeting the specific antigens present in cells. These markers possess differential expression patterns and sub-localizations in cancer stem cells compared to nonneoplastic and somatic cells. In addition to these biomarkers, multiple analytical methods and techniques, including functional assays, cell sorting, filtration approaches, and xenotransplantation methods, are used to identify cancer stem cells. This chapter will overview the functional significance of cancer stem cells, their biological correlations, specific markers, and detection methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Islam F, Gopalan V, Smith RA, Lam AK (2015) Translational potential of cancer stem cells: a review of the detection of cancer stem cells and their roles in cancer recurrence and cancer treatment. Exp Cell Res 335:135–147

    Article  CAS  PubMed  Google Scholar 

  2. Frank NY, Schatton T, Frank MH (2010) The therapeutic promise of the cancer stem cell concept. J Clin Invest 120:41–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC, Dirks PB (2009) Tumour-initiating cells: challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov 8:806–823

    Article  CAS  PubMed  Google Scholar 

  4. Islam F, Qiao B, Smith RA, Gopalan V, Lam AK (2015) Cancer stem cell: fundamental experimental pathological concepts and updates. Exp Mol Pathol 98:184–191

    Article  CAS  PubMed  Google Scholar 

  5. Major AG, Pitty LP, Farah CS (2013) Cancer stem cell markers in head and neck squamous cell carcinoma. Stem Cells Int 2013:319489

    Article  PubMed  PubMed Central  Google Scholar 

  6. Sayed SI, Dwivedi RC, Katna R, Garg A, Pathak KA, Nutting CM, Rhys-Evans P, Harrington KJ, Kazi R (2011) Implications of understanding cancer stem cell (CSC) biology in head and neck squamous cell cancer. Oral Oncol 47:237–243

    Article  PubMed  Google Scholar 

  7. Deonarain MP, Kousparou CA, Epenetos AA (2009) Antibodies targeting cancer stem cells: a new paradigm in immunotherapy? MAbs 1:12–25

    Article  PubMed  PubMed Central  Google Scholar 

  8. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3:730–737

    Article  CAS  PubMed  Google Scholar 

  9. Collins AT, Berry PA, Hyde C, Stower MJ, Maitland NJ (2005) Prospective identification of tumourigenic prostate cancer stem cells. Cancer Res 65:10946–10951

    Article  CAS  PubMed  Google Scholar 

  10. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445:106–110

    Article  PubMed  Google Scholar 

  11. Dirks PB (2008) Brain tumour stem cells: bringing order to the chaos of brain cancer. J Clin Oncol 26:2916–2924

    Article  PubMed  Google Scholar 

  12. Zhao W, Ji X, Zhang F, Li L, Ma L (2012) Embryonic stem cell markers. Molecules 17:6196–6236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shah A, Patel S, Pathak J, Swain N, Kumar S (2014) The evolving concepts of cancer stem cells in head and neck squamous cell carcinoma. Sci World J 2014:842491

    Article  Google Scholar 

  14. Karsten U, Goletz S (2013) What makes cancer stem cell markers different? Springerplus 2:301

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hsu CC, Chiang CW, Cheng HC, Chang WT, Chou CY, Tsai HW, Lee CT, Wu ZH, Lee TY, Chao A, Chow NH, Ho CL (2011) Identifying LRRC16B as an oncofetal gene with transforming enhancing capability using a combined bioinformatics and experimental approach. Oncogene 30:654–667

    Article  CAS  PubMed  Google Scholar 

  16. Hennen E, Faissner A, Lewis X (2012) A neural stem cell specific glycan? Int J Biochem Cell Biol 44:830–833

    Article  CAS  PubMed  Google Scholar 

  17. Monzani E, Facchetti F, Galmozzi E, Corsini E, Benetti A, Cavazzin C, Gritti A, Piccini A, Porro D, Santinami M, Invernici G, Parati E, Alessandri G, LaPorta CA (2007) Melanoma contains CD133 and ABCG2 positive cells with enhanced tumourigenic potential. Eur J Cancer 43:935–946

    Article  CAS  PubMed  Google Scholar 

  18. Guo W, Lasky JL, Chang C-J, Mosessian S, Lewis X, Xiao Y, Yeh JE, Chen JY, Iruela- Arispe ML, Varella-Garcia M, Wu H (2008) Multi-genetic events collaboratively contribute to Pten-null leukemia stem-cell formation. Nature 453:529–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Günthert U, Hofmann M, Rudy W, Reber S, Zöller M, Haussmann I, Matzku S, Wenzel A, Ponta H, Herrlich P (1991) A new variant of glycoprotein CD44 confers metastatic potential to rat carcinoma cells. Cell 65:13–24

    Article  PubMed  Google Scholar 

  20. Cheung AM, Wan TS, Leung JC, Chan LY, Huang H, Kwong YL, Liang R, Leung AY (2007) Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/ SCID engrafting potential. Leukemia 21:1423–1430

    Article  CAS  PubMed  Google Scholar 

  21. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M, Jacquemier J, Viens P, Kleer CG, Liu S, Schott A, Hayes D, Birnbaum D, Wicha MS, Dontu G (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1:555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Carpentino JE, Hynes MJ, Appelman HD, Zheng T, Steindler DA, Scott EW, Huang EH (2009) Aldehyde dehydrogenase-expressing colon stem cells contribute to tumorigenesis in the transition from colitis to cancer. Cancer Res 69:8208–8215

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Li R, Wu X, Wei H, Tian S (2013) Characterization of side population cells isolated from the gastric cancer cell line SGC-7901. Oncol Lett 5:877–883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lianidou ES, Markou A (2011) Circulating tumor cells in breast cancer: detection systems, molecular characterization, and future challenges. Clin Chem 57:1242–1255

    Article  CAS  PubMed  Google Scholar 

  25. Tirino V, Desiderio V, Paino F, De Rosa A, Papaccio F, La Noce M, Laino L, De Francesco F, Papaccio G (2013) Cancer stem cells in solid tumors: an overview and new approaches for their isolation and characterization. FASEB J 27:13–24

    Article  CAS  PubMed  Google Scholar 

  26. Milne AN, Carneiro F, O’Morain C, Offerhaus GJ (2009) Nature meets nurture: molecular genetics of gastric cancer. Hum Genet 126:615–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Podberezin M, Wen J, Chang CC (2013) Cancer stem cells: a review of potential clinical applications. Arch Pathol Lab Med 137:1111–1116

    Article  PubMed  Google Scholar 

  28. Greve B, Beller C, Cassens U, Sibrowski W, Göhde W (2006) The impact of erythrocyte lysing procedures on the recovery of hematopoietic progenitor cells in flow cytometric analysis. Stem Cells 24:793–799

    Article  PubMed  Google Scholar 

  29. Fulawka L, Donizy P, Halon A (2014) Cancer stem cells – the current status of an old concept: literature review and clinical approaches. Biol Res 47:66

    Article  PubMed  PubMed Central  Google Scholar 

  30. Murar M, Vaidya A (2015) Cancer stem cell markers: premises and prospects. Biomark Med 9(12):1331–1342. https://doi.org/10.2217/bmm.15.85. Epub 2015 Nov 19

    Article  CAS  PubMed  Google Scholar 

  31. Hadjimichael C, Chanoumidou K, Papadopoulou N, Arampatzi P, Papamatheakis J, Kretsovali A (2015) Common stemness regulators of embryonic and cancer stem cells. World J Stem Cells 7(9):1150–1184

    Article  PubMed  PubMed Central  Google Scholar 

  32. Zhao W, Li Y, Zhang X (2017) Stemness-related markers in cancer. Cancer Transl Med 3(3):87–95

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Walcher L, Kistenmacher AK, Suo H, Kitte R, Dluczek S, Strauß A, Blaudszun AR, Yevsa T, Fricke S, Kossatz-Boehlert U (2020) Cancer stem cells-origins and biomarkers: perspectives for targeted personalized therapies. Front Immunol 11:1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Atashzar MR, Baharlou R, Karami J, Abdollahi H, Rezaei R, Pourramezan F, Zoljalali Moghaddam SH (2020) Cancer stem cells: a review from origin to therapeutic implications. J Cell Physiol 235(2):790–803

    Article  CAS  PubMed  Google Scholar 

  35. Qian X, Tan C, Wang F, Yang B, Ge Y, Guan Z, Cai J (2016) Esophageal cancer stem cells and implications for future therapeutics. Onco Targets Ther 9:2247–2254

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred King-yin Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pronoy, T.U.H., Islam, F., Gopalan, V., Lam, A.Ky. (2024). Surface Markers for the Identification of Cancer Stem Cells. In: Papaccio, F., Papaccio, G. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 2777. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3730-2_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3730-2_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3729-6

  • Online ISBN: 978-1-0716-3730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics