Skip to main content

Deep Learning of Cancer Stem Cell Morphology

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2777))


Knowledge regarding cancer stem cell (CSC) morphology is limited, and more extensive studies are therefore required. Image recognition technologies using artificial intelligence (AI) require no previous expertise in image annotation. Herein, we describe the construction of AI models that recognize the CSC morphology in cultures and tumor tissues. The visualization of the AI deep learning process enables insight to be obtained regarding unrecognized structures in an image.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions


  1. Wang J, Guo L-P, Chen L-Z, Zeng Y-X, Lu SH (2007) Identification of cancer stem cell–like side population cells in human nasopharyngeal carcinoma cell line. Cancer Res 67(8):3716–3724.

    Article  CAS  PubMed  Google Scholar 

  2. Gupta A, Harrison PJ, Wieslander H, Pielawski N, Kartasalo K, Partel G et al (2019) Deep learning in image cytometry: a review. Cytometry A 95(4):366–380.

    Article  PubMed  Google Scholar 

  3. Isola P, Zhu J, Zhou T, Efros AA (2017) Image-to-image translation with conditional adversarial networks. IEEE, Honolulu

    Book  Google Scholar 

  4. Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D (2020) Grad-CAM: visual explanations from deep networks via gradient-based localization. Int J Comput Vis 128(2):336–359.

    Article  Google Scholar 

  5. Chen L, Kasai T, Li Y, Sugii Y, Jin G, Okada M et al (2012) A model of cancer stem cells derived from mouse induced pluripotent stem cells. PLoS One 7(4):e33544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McCulloch WS, Pitts W (1943) A logical calculus of the ideas immanent in nervous activity. Bull Math Biophys 5(4):115–133.

    Article  Google Scholar 

  7. Rosenblatt F (1957) The perceptron – a perceiving and recognizing automaton. Cornell Aeronautical Laboratory, Ithaca/New York

    Google Scholar 

  8. Fukushima K (1980) Neocognitron: a self-organizing neural network model for a mechanism of pattern recognition unaffected by shift in position. Biol Cybern 36(4):193–202.

    Article  CAS  PubMed  Google Scholar 

  9. Fukushima K (1979) Neocognitron: Neural network model for a mechanism of pattern recognition unaffected by shift in position. IEICI J62-A(10):658–665

    Google Scholar 

  10. Krizhevsky A, Sutskever I, Hinton GE (2017) ImageNet classification with deep convolutional neural networks. Commun ACM 60(6):84–90.

    Article  Google Scholar 

  11. Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S et al (2014) Generative adversarial nets. Paper presented at advances in neural information processing systems, 2014

    Google Scholar 

  12. Isola P, Zhu J-Y, Zhou T, Efros AA (2018) Image-to-image translation with conditional adversarial networks. arXiv:1611.07004v07003 [cs.CV],

  13. Goodfellow I (2016) NIPS 2016 tutorial: generative adversarial networks. arXiv:1701.00160,

  14. Karras T, Laine S, Aila T (2019) A style-based generator architecture for generative adversarial networks

    Google Scholar 

  15. Mirza M, Osindero S (2014) Conditional generative adversarial nets. arXiv:1411.1784,

  16. Aida S, Kameda H, Nishisako S, Kasai T, Sato A, Sugiyama T (2020) Conditional generative adversarial networks to model iPSC-derived cancer stem cells. J Adv Comput Intell Intell Inf 24(1):134–141.

    Article  Google Scholar 

  17. Aida S, Okugawa J, Fujisaka S, Kasai T, Kameda H, Sugiyama T (2020) Deep learning of cancer stem cell morphology using conditional generative adversarial networks. Biomol Ther 10(6):931.

    Article  CAS  Google Scholar 

  18. Hanai Y, Ishihata H, Zhang Z, Maruyama R, Kasai T, Kameda H et al (2022) Temporal and locational values of images affecting the deep learning of cancer stem cell morphology. Biomedicine 10(5):941.

    Article  CAS  Google Scholar 

  19. Simonyan K, Zisserman A (2014) Very Deep Convolutional Networks for Large-Scale Image Recognition.

  20. He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image Recognition. pp 770–778

    Google Scholar 

  21. PyTorch installation (2022)

  22. Gildenblat J (2021) PyTorch library for CAM methods.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Tomoyasu Sugiyama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kameda, H., Ishihata, H., Sugiyama, T. (2024). Deep Learning of Cancer Stem Cell Morphology. In: Papaccio, F., Papaccio, G. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 2777. Humana, New York, NY.

Download citation

  • DOI:

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3729-6

  • Online ISBN: 978-1-0716-3730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics