Skip to main content

Generation of Cancer Stem Cells by Co-Culture Methods

  • Protocol
  • First Online:
Cancer Stem Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2777))

  • 391 Accesses

Abstract

Cancer stem cells (CSCs) exhibit intricate regulatory dynamics within the tumor microenvironment, involving interactions with various components like mesenchymal stem cells (MSCs), adipocytes, cancer-associated fibroblasts (CAFs), endothelial cells, tumor-associated macrophages (TAMs), and other immune cells. These interactions occur through complex networks of cytokines, inflammatory factors, and several growth factors. Diverse techniques are employed to generate CSCs, including serum-free sphere culture, chemotherapy, and radiation therapy. A novel approach to generate CSCs involves co-culturing, wherein recent research highlights the role of secreted factors such as inflammatory cytokines from MSCs, CAFs, and TAMs in inducing CSC-like characteristics in cancer cells. While the co-culture method shows promise in generating CSCs, further investigations are needed to comprehensively establish this process. This chapter focuses on establishing a co-culture-based technique for generating CSCs by combining cancer cells with TAMs and CAFs, elucidating the intricate mechanisms underlying this phenomenon.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ning Y, Cui Y, Li X, Cao X, Chen A, Xu C et al (2018) Co-culture of ovarian cancer stem-like cells with macrophages induced SKOV3 cells stemness via IL-8/STAT3 signaling. Biomed Pharmacother 103:262–271

    Article  CAS  PubMed  Google Scholar 

  2. Chan TS, Shaked Y, Tsai KK (2019) Targeting the interplay between cancer fibroblasts, mesenchymal stem cells, and cancer stem cells in desmoplastic cancers. Front Oncol 9:688

    Article  PubMed  PubMed Central  Google Scholar 

  3. Singh SK, Hawkins C, Clarke ID, Squire JA, Bayani J, Hide T et al (2004) Identification of human brain tumour initiating cells. Nature 432(7015):396–401

    Article  CAS  PubMed  Google Scholar 

  4. Ginestier C, Hur MH, Charafe-Jauffret E, Monville F, Dutcher J, Brown M et al (2007) ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 1(5):555–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Li C, Heidt DG, Dalerba P, Burant CF, Zhang L, Adsay V et al (2007) Identification of pancreatic cancer stem cells. Cancer Res 67(3):1030–1037

    Article  CAS  PubMed  Google Scholar 

  6. Van den Hoogen C, van der Horst G, Cheung H, Buijs JT, Lippitt JM, Guzmán-Ramírez N et al (2010) High aldehyde dehydrogenase activity identifies tumor-initiating and metastasis-initiating cells in human prostate cancer. Cancer Res 70(12):5163–5173

    Article  PubMed  Google Scholar 

  7. O’Brien CA, Pollett A, Gallinger S, Dick JE (2007) A human colon cancer cell capable of initiating tumour growth in immunodeficient mice. Nature 445(7123):106–110

    Article  PubMed  Google Scholar 

  8. Wang L, Huang X, Zheng X, Wang X, Li S, Zhang L et al (2013) Enrichment of prostate cancer stem-like cells from human prostate cancer cell lines by culture in serum-free medium and chemoradiotherapy. Int J Biol Sci 9(5):472–479

    Article  PubMed  PubMed Central  Google Scholar 

  9. Torre-Healy LA, Berezovsky A, Lathia JD (2017) Isolation, characterization, and expansion of cancer stem cells. Methods Mol Biol (Clifton, N.J.) 1553:133–143

    Article  CAS  Google Scholar 

  10. Pasquier J, Rafii A (2013) Role of the microenvironment in ovarian cancer stem cell maintenance. Biomed Res Int 2013:630782

    Article  PubMed  Google Scholar 

  11. Korkaya H, Liu S, Wicha MS (2011) Breast cancer stem cells, cytokine networks, and the tumor microenvironment. J Clin Invest 121(10):3804–3809

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Pradhan R, Paul S, Das B, Sinha S, Dash SR, Mandal M et al (2023) Resveratrol nanoparticle attenuates metastasis and angiogenesis by deregulating inflammatory cytokines through inhibition of CAFs in oral cancer by CXCL-12/IL-6-dependent pathway. J Nutr Biochem 113:109257

    Article  CAS  PubMed  Google Scholar 

  13. Iliopoulos D, Hirsch HA, Wang G, Struhl K (2011) Inducible formation of breast cancer stem cells and their dynamic equilibrium with non-stem cancer cells via IL6 secretion. Proc Natl Acad Sci U S A 108(4):1397–1402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Sawa-Wejksza K, Kandefer-Szerszeń M (2018) Tumor-associated macrophages as target for antitumor therapy. Arch Immunol Ther Exp (Warsz) 66(2):97–111

    Article  CAS  PubMed  Google Scholar 

  15. Storz P (2023) Roles of differently polarized macrophages in the initiation and progression of pancreatic cancer. Front Immunol 14:1237711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Svensson J, Jenmalm MC, Matussek A, Geffers R, Berg G, Ernerudh J (2011) Macrophages at the fetal-maternal interface express markers of alternative activation and are induced by M-CSF and IL-10. J Immunol (Baltimore, Md.: 1950) 187(7):3671–3682

    Article  CAS  Google Scholar 

  17. Wang D, Yue DL, Wang D, Chen XF, Yin XY, Wang YP et al (2018) Aspirin inhibits cell stemness of esophageal cancer by downregulation of chemokine CCL2. Chinese J Oncol 40(10):744–749

    CAS  Google Scholar 

  18. Jinushi M, Chiba S, Yoshiyama H, Masutomi K, Kinoshita I, Dosaka-Akita H et al (2011) Tumor-associated macrophages regulate tumorigenicity and anticancer drug responses of cancer stem/initiating cells. Proc Natl Acad Sci U S A 108(30):12425–12430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Raghavan S, Mehta P, Xie Y, Lei YL, Mehta G (2019) Ovarian cancer stem cells and macrophages reciprocally interact through the WNT pathway to promote pro-tumoral and malignant phenotypes in 3D engineered microenvironments. J Immunother Cancer 7(1):190

    Article  PubMed  PubMed Central  Google Scholar 

  20. Yang L, Dong Y, Li Y, Wang D, Liu S, Wang D et al (2019) IL-10 derived from M2 macrophage promotes cancer stemness via JAK1/STAT1/NF-κB/Notch1 pathway in non-small cell lung cancer. Int J Cancer 145(4):1099–1110

    Article  CAS  PubMed  Google Scholar 

  21. Luo S, Yang G, Ye P, Cao N, Chi X, Yang WH (2022) Macrophages are a double-edged sword: molecular crosstalk between tumor-associated macrophages and cancer stem cells. Biomol Ther 12(6):850

    CAS  Google Scholar 

  22. Zhang X, Chen L, Dang WQ, Cao MF, Xiao JF, Lv SQ et al (2020) CCL8 secreted by tumor-associated macrophages promotes invasion and stemness of glioblastoma cells via ERK1/2 signaling. Lab Investig 100(4):619–629

    Article  CAS  PubMed  Google Scholar 

  23. Zhu F, Li X, Chen S, Zeng Q, Zhao Y, Luo F (2016) Tumor-associated macrophage or chemokine ligand CCL17 positively regulates the tumorigenesis of hepatocellular carcinoma. Med Oncol (Northwood, London, England) 33(2):17

    Article  Google Scholar 

  24. Nie G, Cao X, Mao Y, Lv Z, Lv M, Wang Y et al (2021) Tumor-associated macrophages-mediated CXCL8 infiltration enhances breast cancer metastasis: suppression by Danirixin. Int Immunopharmacol 95:107153

    Article  CAS  PubMed  Google Scholar 

  25. Zhang B, Ye H, Ren X, Zheng S, Zhou Q, Chen C (2022) Macrophage-expressed CD51 promotes cancer stem cell properties via the TGF-β1/smad2/3 axis in pancreatic cancer. Cancer Lett 548:215897

    Article  CAS  PubMed  Google Scholar 

  26. Ma C, Komohara Y, Ohnishi K, Shimoji T, Kuwahara N, Sakumura Y (2016) Infiltration of tumor-associated macrophages is involved in CD44 expression in clear cell renal cell carcinoma. Cancer Sci 107(5):700–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yang J, Liao D, Chen C, Liu Y, Chuang TH, Xiang R (2013) Tumor-associated macrophages regulate murine breast cancer stem cells through a novel paracrine EGFR/Stat3/Sox-2 signaling pathway. Stem Cells (Dayton, Ohio) 31(2):248–258

    Article  CAS  PubMed  Google Scholar 

  28. Wei X, Yang S, Pu X, He S, Yang Z, Sheng X (2019) Tumor-associated macrophages increase the proportion of cancer stem cells in lymphoma by secreting pleiotrophin. Am J Transl Res 11(10):6393–6402

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Karnoub AE, Dash AB, Vo AP, Sullivan A, Brooks MW, Bell GW et al (2007) Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 449(7162):557–563

    Article  CAS  PubMed  Google Scholar 

  30. Liu S, Ginestier C, Ou SJ, Clouthier SG, Patel SH, Monville F et al (2011) Breast cancer stem cells are regulated by mesenchymal stem cells through cytokine networks. Cancer Res 71(2):614–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Timaner M, Letko-Khait N, Kotsofruk R, Benguigui M, Beyar-Katz O et al (2018) Therapy-educated mesenchymal stem cells enrich for tumor-initiating cells. Cancer Res 78(5):1253–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Li HJ, Reinhardt F, Herschman HR, Weinberg RA (2012) Cancer-stimulated mesenchymal stem cells create a carcinoma stem cell niche via prostaglandin E2 signaling. Cancer Discov 2(9):840–855

    Article  CAS  PubMed  Google Scholar 

  33. Kabashima-Niibe A, Higuchi H, Takaishi H, Masugi Y, Matsuzaki Y, Mabuchi Y (2013) Mesenchymal stem cells regulate epithelial-mesenchymal transition and tumor progression of pancreatic cancer cells. Cancer Sci 104(2):157–164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Biffi G, Oni TE, Spielman B, Hao Y, Elyada E, Park Y (2019) IL1-induced JAK/STAT signaling is antagonized by TGFβ to shape CAF heterogeneity in pancreatic ductal adenocarcinoma. Cancer Discov 9(2):282–301

    Article  PubMed  Google Scholar 

  35. Todaro M, Gaggianesi M, Catalano V, Benfante A, Iovino F, Biffoni M (2014) CD44v6 is a marker of constitutive and reprogrammed cancer stem cells driving colon cancer metastasis. Cell Stem Cell 14(3):342–356

    Article  CAS  PubMed  Google Scholar 

  36. Chen WJ, Ho CC, Chang YL, Chen HY, Lin CA, Ling TY (2014) Cancer-associated fibroblasts regulate the plasticity of lung cancer stemness via paracrine signalling. Nat Commun 5:3472

    Article  PubMed  Google Scholar 

  37. Lotti F, Jarrar AM, Pai RK, Hitomi M, Lathia J, Mace A (2013) Chemotherapy activates cancer-associated fibroblasts to maintain colorectal cancer-initiating cells by IL-17A. J Exp Med 210(13):2851–2872

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Shi Y, Gao W, Lytle NK, Huang P, Yuan X, Dann AM (2021) Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 600(7889):E18

    Article  CAS  PubMed  Google Scholar 

  39. Lonardo E, Hermann PC, Mueller MT, Huber S, Balic A, Miranda-Lorenzo I (2011) Nodal/Activin signaling drives self-renewal and tumorigenicity of pancreatic cancer stem cells and provides a target for combined drug therapy. Cell Stem Cell 9(5):433–446

    Article  CAS  PubMed  Google Scholar 

  40. Lonardo E, Frias-Aldeguer J, Hermann PC, Heeschen C (2012) Pancreatic stellate cells form a niche for cancer stem cells and promote their self-renewal and invasiveness. Cell Cycle (Georgetown, Tex) 11(7):1282–1290

    Article  CAS  PubMed  Google Scholar 

  41. Lenos KJ, Miedema DM, Lodestijn SC, Nijman LE, van den Bosch T, Romero Ros X (2018) Stem cell functionality is microenvironmentally defined during tumour expansion and therapy response in colon cancer. Nat Cell Biol 20(10):1193–1202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Rudnick JA, Arendt LM, Klebba I, Hinds JW, Iyer V, Gupta PB (2011) Functional heterogeneity of breast fibroblasts is defined by a prostaglandin secretory phenotype that promotes expansion of cancer-stem like cells. PLoS One 6(9):e24605

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tang YA, Chen YF, Bao Y, Mahara S, Yatim SMJM, Oguz G (2018) Hypoxic tumor microenvironment activates GLI2 via HIF-1α and TGF-β2 to promote chemoresistance in colorectal cancer. Proc Natl Acad Sci U S A 115(26):E5990–E5999

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Sun Y, Campisi J, Higano C, Beer TM, Porter P, Coleman I et al (2012) Treatment-induced damage to the tumor microenvironment promotes prostate cancer therapy resistance through WNT16B. Nat Med 18(9):1359–1368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Tsuyada A, Chow A, Wu J, Somlo G, Chu P, Loera S (2012) CCL2 mediates cross-talk between cancer cells and stromal fibroblasts that regulates breast cancer stem cells. Cancer Res 72(11):2768–2779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Pradhan R, Chatterjee S, Hembram KC, Sethy C, Mandal M, Kundu CN (2021) Nano formulated resveratrol inhibits metastasis and angiogenesis by reducing inflammatory cytokines in oral cancer cells by targeting tumor associated macrophages. J Nutr Biochem 92:108624

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chanakya Nath Kundu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Das, B., Kundu, C.N. (2024). Generation of Cancer Stem Cells by Co-Culture Methods. In: Papaccio, F., Papaccio, G. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 2777. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3730-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3730-2_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3729-6

  • Online ISBN: 978-1-0716-3730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics