Skip to main content

Detection of Cancer Stem Cells in Normal and Dysplastic/Leukemic Human Blood

  • Protocol
  • First Online:
Cancer Stem Cells

Abstract

The hierarchical organization of the leukemic stem cells (LSCs) is identical to that of healthy counterpart cells. It may be split into roughly three stages: a small number of pluripotent stem cells at the top, few lineage-restricted cells in the middle, and several terminally differentiated blood cells at the bottom. Although LSCs can differentiate into the hematopoietic lineage, they can also accumulate as immature progenitor cells, also known as blast cells. Since blast cells are uncommon in healthy bloodstreams, their presence might be a sign of cancer. For instance, a 20% blast cutoff in peripheral blood or bone marrow is formally used to distinguish acute myeloid leukemia from myelodysplastic neoplasms, which is essential to plan the patients’ management. Many techniques may be useful for blast enumeration: one of them is flow cytometry, which can perform analyses on many cells by detecting the expression of cell surface markers. Leukemic and non-leukemic blast cells might indeed be characterized by the same surface markers, but these markers are usually differently expressed. Here we propose to use CD45, in combination with CD34 and other cell surface markers, to identify and immunophenotype blast cells in patient-derived samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Yu Z, Pestell TG, Lisanti MP, Pestell RG (2012) Cancer stem cells. Int J Biochem Cell Biol 44(12):2144–2151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wang JC, Dick JE (2005) Cancer stem cells: lessons from leukemia. Trends Cell Biol 15(9):494–501

    Article  CAS  PubMed  Google Scholar 

  3. Jordan CT (2007) The leukemic stem cell. Best Pract Res Clin Haematol 20(1):13–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Veiga CB, Lawrence EM, Murphy AJ, Herold MJ, Dragoljevic D (2021) Myelodysplasia syndrome, clonal hematopoiesis and cardiovascular disease. Cancers (Basel) 13(8):1968

    Article  CAS  PubMed  Google Scholar 

  5. Jan M, Snyder TM, Corces-Zimmerman MR, Vyas P, Weissman IL, Quake SR, Majeti R (2012) Clonal evolution of preleukemic hematopoietic stem cells precedes human acute myeloid leukemia. Sci Transl Med 4(149):149ra18

    Article  Google Scholar 

  6. Bowman RL, Busque L, Levine RL (2018) Clonal hematopoiesis and evolution to hematopoietic malignancies. Cell Stem Cell 22(2):157–170

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Corces-Zimmerman MR, Hong WJ, Weissman IL, Medeiros BC, Majeti R (2014) Preleukemic mutations in human acute myeloid leukemia affect epigenetic regulators and persist in remission. Proc Natl Acad Sci U S A 111(7):2548–2553

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Shlush LI, Zandi S, Mitchell A, Chen WC, Brandwein JM, Gupta V, Kennedy JA, Schimmer AD, Schuh AC, Yee KW, McLeod JL, Doedens M, Medeiros JJF, Marke R, Kim HJ, Lee K, McPherson JD, Hudson TJ, Brown AMK, Yousif F, Trinh QM, Stein LD, Minden MD, Wang JCY, Dick JE (2014) Identification of pre-leukaemic haematopoietic stem cells in acute leukaemia. Nature 506(7488):328–333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Stauber J, Greally JM, Steidl U (2021) Preleukemic and leukemic evolution at the stem cell level. Blood 137(8):1013–1018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Eppert K, Takenaka K, Lechman ER, Waldron L, Nilsson B, van Galen P, Metzeler KH, Poeppl A, Ling V, Beyene J, Canty JA, Danska JS, Bohlander SK, Buske C, Minden MD, Golub TR, Jurisica I, Ebert BL, Dick JE (2011) Stem cell gene expression programs influence clinical outcome in human leukemia. Nat Med 17(9):1086–1093

    Article  CAS  PubMed  Google Scholar 

  11. Bonnet D, Dick JE (1997) Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 3(7):730–737

    Article  CAS  PubMed  Google Scholar 

  12. Blair A, Hogge DE, Ailles LE, Lansdorp PM, Sutherland HJ (1997) Lack of expression of Thy-1 (CD90) on acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo. Blood 89(9):3104–3112

    Article  CAS  PubMed  Google Scholar 

  13. Blair A, Sutherland HJ (2000) Primitive acute myeloid leukemia cells with long-term proliferative ability in vitro and in vivo lack surface expression of c-kit (CD117). Exp Hematol 28(6):660–671

    Article  CAS  PubMed  Google Scholar 

  14. Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, Luger SM, Phillips GL (2000) The interleukin-3 receptor alpha chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia 14(10):1777–1784

    Article  CAS  PubMed  Google Scholar 

  15. Luis TC, Ichii M, Brugman MH, Kincade P, Staal FJ (2012) Wnt signaling strength regulates normal hematopoiesis and its deregulation is involved in leukemia development. Leukemia 26(3):414–421

    Article  CAS  PubMed  Google Scholar 

  16. Staal FJ, Famili F, Garcia Perez L, Pike-Overzet K (2016) Aberrant Wnt signaling in leukemia. Cancers (Basel) 8(9):78

    Article  PubMed  Google Scholar 

  17. Reya T, Morrison SJ, Clarke MF, Weissman IL (2001) Stem cells, cancer, and cancer stem cells. Nature 414(6859):105–111

    Article  CAS  PubMed  Google Scholar 

  18. Wang Y, Krivtsov AV, Sinha AU, North TE, Goessling W, Feng Z, Zon LI, Armstrong SA (2010) The Wnt/beta-catenin pathway is required for the development of leukemia stem cells in AML. Science 327(5973):1650–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ding Y, Gao H, Zhang Q (2017) The biomarkers of leukemia stem cells in acute myeloid leukemia. Stem Cell Investig 4:19

    Article  PubMed  PubMed Central  Google Scholar 

  20. van Gils N, Denkers F, Smit L (2021) Escape from treatment; the different faces of leukemic stem cells and therapy resistance in acute myeloid leukemia. Front Oncol 11:659253

    Article  PubMed  PubMed Central  Google Scholar 

  21. Khoury JD, Solary E, Abla O, Akkari Y, Alaggio R, Apperley JF, Bejar R, Berti E, Busque L, Chan JKC, Chen W, Chen X, Chng WJ, Choi JK, Colmenero I, Coupland SE, Cross NCP, Jong DD, Elghetany MT, Takahashi E, Emile JF, Ferry J, Fogelstrand L, Fontenay M, Germing U, Gujral S, Haferlach T, Harrison C, Hodge JC, Hu S, Jansen JH, Kanagal-Shamanna R, Kantarjian HM, Kratz CP, Li XQ, Lim MS, Loeb K, Loghavi S, Marcogliese A, Meshinchi S, Michaels P, Naresh KN, Natkunam Y, Nejati R, Ott G, Padron E, Patel KP, Patkar N, Picarsic J, Platzbecker U, Roberts I, Schuh A, Sewell W, Siebert R, Tembhare P, Tyner J, Verstovsek S, Wang W, Wood B, Xiao W, Yeung C, Hochhaus A (2022) The 5th edition of the World Health Organization classification of Haematolymphoid Tumours: myeloid and histiocytic/dendritic neoplasms. Leukemia 36(7):1703–1719

    Article  PubMed  PubMed Central  Google Scholar 

  22. Swerdlow SH, Campo E, Harris NL, Jaffe ES, Pileri SA, Stein H, Thiele J (2017) WHO classification of Tumours of Haematopoietic and lymphoid tissues. IARC

    Google Scholar 

  23. Zhang Y, Wu J, Qin T, Xu Z, Qu S, Pan L, Li B, Wang H, Zhang P, Yan X, Gong J, Gao Q, Gale RP, Xiao Z (2022) Comparison of the revised 4th (2016) and 5th (2022) editions of the World Health Organization classification of myelodysplastic neoplasms. Leukemia 36(12):2875–2882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen X, Fromm JR, Naresh KN (2022) “Blasts” in myeloid neoplasms – how do we define blasts and how do we incorporate them into diagnostic schema moving forward? Leukemia 36(2):327–332

    Article  PubMed  Google Scholar 

  25. Zini G (2021) How I investigate difficult cells at the optical microscope. Int J Lab Hematol 43(3):346–353

    Article  PubMed  Google Scholar 

  26. DiFrancesco T, Boychuk DJ, Lafferty JD, Crowther MA (2012) Bone marrow aspirate collection and preparation–a comparison of three methods. Clin Invest Med 35(3):E114–E116

    Article  PubMed  Google Scholar 

  27. van de Loosdrecht AA, Alhan C, Béné MC, Della Porta MG, Dräger AM, Feuillard J, Font P, Germing U, Haase D, Homburg CH, Ireland R, Jansen JH, Kern W, Malcovati L, Marvelde GJT, Mufti GJ, Ogata K, Orfao A, Ossenkoppele GJ, Porwit A, Preijers FW, Richards SJ, Schuurhuis GJ, Subirá D, Valent P, van der Velden VHJ, Vyas P, Westra AH, de Witte TM, Wells DA, Loken MR, Westers TM (2009) Standardization of flow cytometry in myelodysplastic syndromes: report from the first European LeukemiaNet working conference on flow cytometry in myelodysplastic syndromes. Haematologica 94(8):1124–1134

    Article  PubMed  PubMed Central  Google Scholar 

  28. Westers TM, Ireland R, Kern W, Alhan C, Balleisen JS, Bettelheim P, Burbury K, Cullen M, Cutler JA, Della Porta MG, Dräger AM, Feuillard J, Font P, Germing U, Haase D, Johansson U, Kordasti S, Loken MR, Malcovati L, te Marvelde JG, Matarraz S, Milne T, Moshaver B, Mufti GJ, Ogata K, Orfao A, Porwit A, Psarra K, Richards SJ, Subirá D, Tindell V, Vallespi T, Valent P, van der Velden VHJ, de Witte TM, Wells DA, Zettl F, Béné MC, van de Loosdrecht AA (2012) Standardization of flow cytometry in myelodysplastic syndromes: a report from an international consortium and the European LeukemiaNet Working Group. Leukemia 26(7):1730–1741

    Article  CAS  PubMed  Google Scholar 

  29. Alhan C, Westers TM, Cremers EM, Cali C, Witte BI, Ossenkoppele GJ, de Loosdrecht AA (2014) High flow cytometric scores identify adverse prognostic subgroups within the revised international prognostic scoring system for myelodysplastic syndromes. Br J Haematol 167(1):100–109

    Article  PubMed  Google Scholar 

  30. Wells DA, Benesch M, Loken MR, Vallejo C, Myerson D, Leisenring WM, Deeg HJ (2003) Myeloid and monocytic dyspoiesis as determined by flow cytometric scoring in myelodysplastic syndrome correlates with the IPSS and with outcome after hematopoietic stem cell transplantation. Blood 102(1):394–403

    Article  CAS  PubMed  Google Scholar 

  31. Hanekamp D, Cloos J, Schuurhuis GJ (2017) Leukemic stem cells: identification and clinical application. Int J Hematol 105(5):549–557

    Article  CAS  PubMed  Google Scholar 

  32. Zeijlemaker W, Kelder A, Oussoren-Brockhoff YJ, Scholten WJ, Snel AN, Veldhuizen D, Cloos J, Ossenkoppele GJ (2016) A simple one-tube assay for immunophenotypical quantification of leukemic stem cells in acute myeloid leukemia. Leukemia 30(2):439–446

    Article  CAS  PubMed  Google Scholar 

  33. Ehninger A, Kramer M, Röllig C, Thiede C, Bornhäuser M, von Bonin M, Wermke M, Feldmann A, Bachmann M, Ehninger G, Oelschlägel U (2014) Distribution and levels of cell surface expression of CD33 and CD123 in acute myeloid leukemia. Blood Cancer J 4(6):e218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Chen Z, Li Y, Tong Y, Gao Q, Mao X, Zhang W, Xia Z, Fu C (2016) Stepwise discriminant function analysis for rapid identification of acute promyelocytic leukemia from acute myeloid leukemia with multiparameter flow cytometry. Int J Hematol 03(3):306–315

    Article  Google Scholar 

  35. Dalal BI, Mansoor S, Manna M, Pi S, Sauro GD, Hogge DE (2012) Detection of CD34, TdT, CD56, CD2, CD4, and CD14 by flow cytometry is associated with NPM1 and FLT3 mutation status in cytogenetically normal acute myeloid leukemia. Clin Lymphoma Myeloma Leuk 12(4):274–279

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matilde Y. Follo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

De Stefano, A. et al. (2024). Detection of Cancer Stem Cells in Normal and Dysplastic/Leukemic Human Blood. In: Papaccio, F., Papaccio, G. (eds) Cancer Stem Cells. Methods in Molecular Biology, vol 2777. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3730-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3730-2_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3729-6

  • Online ISBN: 978-1-0716-3730-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics