Skip to main content

Analysis of a Super-Complex at Contact Sites Between Mitochondria and Plastids

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2776))

  • 312 Accesses

Abstract

Plastids are organelles playing fundamental roles in different cellular processes such as energy metabolism or lipid biosynthesis. To fulfill their biogenesis and their function in the cell, plastids have to communicate with other cellular compartments. This communication can be mediated by the establishment of direct contact sites between plastids envelop and other organelles. These contacts are dynamic structures regulated in response to stress. For example, during phosphate (Pi) starvation, the number of contact sites between plastids and mitochondria significantly increases. In this situation, these contacts play an important role in the transfer of galactoglycerolipids from plastids to mitochondria. Recently, Pi starvation stress was used to identify key proteins involved in the traffic of galactoglycerolipids from plastids to mitochondria in Arabidopsis thaliana. A mitochondrial lipoprotein complex called MTL (Mitochondrial Transmembrane Lipoprotein) was identified. This complex contains mitochondrial proteins but also proteins located in the plastid envelope, suggesting its presence at the plastid-mitochondria junction. This chapter describes the protocol to isolate the MTL complex by clear-native polyacrylamide gel electrophoresis (CN-PAGE) from the mitochondrial fraction of Arabidopsis cell cultures and the methods to study different features of this complex.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Boudière L, Michaud M, Petroutsos D et al (2014) Glycerolipids in photosynthesis: composition, synthesis and trafficking. Biochim Biophys Acta Bioenerg 1837(4):470–480. https://doi.org/10.1016/j.bbabio.2013.09.007

    Article  CAS  Google Scholar 

  2. Li-Beisson Y, Shorrosh B, Beisson F et al (2013) Acyl-lipids metabolism. Arabibopsis Book. https://doi.org/10.1199/tab.0161

  3. Boudiere L, Botte CY, Saidani N et al (2012) Galvestine-1, a novel chemical probe for the study of the glycerolipid homeostasis system in plant cells. Mol BioSyst 8(8):2023–2035. https://doi.org/10.1039/c2mb25067e

    Article  CAS  PubMed  Google Scholar 

  4. Michaud M, Prinz WA, Jouhet J (2017) Glycerolipid synthesis and lipid trafficking in plant mitochondria. FEBS J 284:376–390. https://doi.org/10.1111/febs.13812

    Article  CAS  PubMed  Google Scholar 

  5. Michaud M, Jouhet J (2019) Lipid trafficking at membrane contact sites during plant development and stress response. Front Plant Sci 10:1–10. https://doi.org/10.3389/fpls.2019.00002

    Article  Google Scholar 

  6. Moellering ER, Benning C (2011) Galactoglycerolipid metabolism under stress: a time for remodeling. Trends Plant Sci 16(2):98–107. https://doi.org/10.1016/j.tplants.2010.11.004

    Article  CAS  PubMed  Google Scholar 

  7. Raghothama KG (1999) Phosphate acquisition. Ann Rev Plant Physiol Plant Mol Biol 50:665–693. https://doi.org/10.1146/annurev.arplant.50.1.665

    Article  CAS  Google Scholar 

  8. Zhang Z, Liao H, Lucas WJ (2014) Molecular mechanisms underlying phosphate sensing, signaling, and adaptation in plants. J Integr Plant Biol 56(3):192–220. https://doi.org/10.1111/jipb.12163

    Article  CAS  PubMed  Google Scholar 

  9. Poirier Y, Thoma S, Somerville C et al (1991) Mutant of Arabidopsis deficient in xylem loading of phosphate. Plant Physiol 97(3):1087–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jouhet J, Marechal E, Bligny R et al (2003) Transient increase of phosphatidylcholine in plant cells in response to phosphate deprivation. FEBS Lett 544(1–3):63–68. https://doi.org/10.1016/S0014-59793(03)00477-0

    Article  CAS  PubMed  Google Scholar 

  11. Andersson MX, Stridh MH, Larsson KE et al (2003) Phosphate-deficient oat replaces a major portion of the plasma membrane phospholipids with the galactolipid digalactosyldiacylglycerol. FEBS Lett 537(1–3):128–132

    Article  CAS  PubMed  Google Scholar 

  12. Jouhet J, Marechal E, Baldan B et al (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167(5):863–874. https://doi.org/10.1083/jcb.200407022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Andersson MX, Larsson KE, Tjellstrom H et al (2005) Phosphate-limited oat. The plasma membrane and the tonoplast as major targets for phospholipid-to-glycolipid replacement and stimulation of phospholipases in the plasma membrane. J Biol Chem 280(30):27578–27586. https://doi.org/10.1074/jbc.M503273200

    Article  CAS  PubMed  Google Scholar 

  14. Michaud M, Gros V, Tardif M et al (2016) AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr Biol 26:627–639. https://doi.org/10.1016/j.cub.2016.01.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. von der Malsburg K, Muller JM, Bohnert M et al (2011) Dual role of mitofilin in mitochondrial membrane organization and protein biogenesis. Dev Cell 21(4):694–707. https://doi.org/10.1016/j.devcel.2011.08.026. S1534-5807(11)00364-9 [pii]

    Article  CAS  PubMed  Google Scholar 

  16. Axelos M, Curie C, Mazzolini L, Bardet C, Lescure B (1992) A protocol for transient gene expression in Arabidopsis thaliana protoplasts isolated from cell suspension cultures. Plant Physiol Biochem 30:123–128

    CAS  Google Scholar 

  17. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  18. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37(8):911–917

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work is supported by the French National Research Agency French National Research Agency (GRAL Labex ANR-10-LABEX-04, EUR CBS ANR-17-EURE-0003, JCJC MiCoSLiT ANR-19-C13–0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morgane Michaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Michaud, M. (2024). Analysis of a Super-Complex at Contact Sites Between Mitochondria and Plastids. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 2776. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3726-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3726-5_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3725-8

  • Online ISBN: 978-1-0716-3726-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics