Skip to main content

The Main Functions of Plastids

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2776))

Abstract

Plastids are semi-autonomous organelles like mitochondria and derive from a cyanobacterial ancestor that was engulfed by a host cell. During evolution, they have recruited proteins originating from the nuclear genome, and only parts of their ancestral metabolic properties were conserved and optimized to limit functional redundancy with other cell compartments. Furthermore, large disparities in metabolic functions exist among various types of plastids, and the characterization of their various metabolic properties is far from being accomplished. In this review, we provide an overview of the main functions, known to be achieved by plastids or shared by plastids and other compartments of the cell. In short, plastids appear at the heart of all main plant functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48

    CAS  PubMed  Google Scholar 

  2. Bogorad L (2008) Evolution of early eukaryotic cells: genomes, proteomes, and compartments. Photosynth Res 95:11–21

    CAS  PubMed  Google Scholar 

  3. Reyes-Prieto A, Weber AP, Bhattacharya D (2007) The origin and establishment of the plastid in algae and plants. Annu Rev Genet 41:147–168

    CAS  PubMed  Google Scholar 

  4. Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    CAS  PubMed  Google Scholar 

  5. Sun Y, Jarvis RP (2023) Chloroplast proteostasis: import, sorting, ubiquitination, and proteolysis. Annu Rev Plant Biol 74:259–283

    CAS  PubMed  Google Scholar 

  6. Lee DW, Lee J, Hwang I (2017) Sorting of nuclear-encoded chloroplast membrane proteins. Curr Opin Plant Biol 40:1–7

    CAS  PubMed  Google Scholar 

  7. Inaba T, Ito-Inaba Y (2010) Versatile roles of plastids in plant growth and development. Plant Cell Physiol 51:1847–1853

    CAS  PubMed  Google Scholar 

  8. Kawamoto N, Morita MT (2022) Gravity sensing and responses in the coordination of the shoot gravitropic setpoint angle. New Phytol 236:1637–1654

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Perbal G, Driss-Ecole D (2003) Mechanotransduction in gravisensing cells. Trends Plant Sci 8:498–504

    CAS  PubMed  Google Scholar 

  10. Pouliquen O, Forterre Y, Bérut A et al (2017) A new scenario for gravity detection in plants: the position sensor hypothesis. Phys Biol 14:035005

    CAS  PubMed  Google Scholar 

  11. Taniguchi M, Furutani M, Nishimura T et al (2017) The Arabidopsis LAZY1 family plays a key role in gravity signaling within statocytes and in branch angle control of roots and shoots. Plant Cell 29:1984–1999

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Han H, Adamowski M, Qi L et al (2021) PIN-mediated polar auxin transport regulations in plant tropic responses. New Phytol 232(2):510–522

    CAS  PubMed  Google Scholar 

  13. Block MA, Douce R, Joyard J et al (2007) Chloroplast envelope membranes: a dynamic interface between plastids and the cytosol. Photosynth Res 92:225–244

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rolland N, Curien G, Finazzi G et al (2012) The biosynthetic capacities of the plastids and integration between cytoplasmic and chloroplast processes. Annu Rev Genet 46:233–264

    CAS  PubMed  Google Scholar 

  15. Agrawal GK, Bourguignon J, Rolland N et al (2011) Plant organelle proteomics: collaborating for optimal cell function. Mass Spectrom Rev 30(5):772–853

    CAS  PubMed  Google Scholar 

  16. Lande NV, Barua P, Gayen D et al (2020) Proteomic dissection of the chloroplast: moving beyond photosynthesis. J Proteome 212:103542

    CAS  Google Scholar 

  17. Kleffmann T, Hirsch-Hoffmann M, Gruissem W et al (2006) plprot: a comprehensive proteome database for different plastid types. Plant Cell Physiol 47(3):432–436

    CAS  PubMed  Google Scholar 

  18. Sun Q, Zybailov B, Majeran W et al (2009) PPDB, the plant proteomics database at Cornell. Nucleic Acids Res 37:D969–D974

    CAS  PubMed  Google Scholar 

  19. Heazlewood JL, Verboom RE, Tonti-Filippini J et al (2007) SUBA: the arabidopsis subcellular database. Nucleic Acids Res 35:D213–D218

    CAS  PubMed  Google Scholar 

  20. Tanz SK, Castleden I, Hooper CM et al (2013) SUBA3: a database for integrating experimentation and prediction to define the SUBcellular location of proteins in Arabidopsis. Nucleic Acids Res 41:1185–1191

    Google Scholar 

  21. Hooper CM, Castleden IR, Tanz SK et al (2017) SUBA4: the interactive data analysis centre for Arabidopsis subcellular protein locations. Nucleic Acids Res 45(D1):D1064–D1074

    CAS  PubMed  Google Scholar 

  22. Hooper CM, Castleden I, Tanz SK et al (2022) SUBA5 bulk data: subcellular localisation database for Arabidopsis proteins version 5. https://doi.org/10.26182/8dht-4017

  23. Ferro M, Brugière S, Salvi D et al (2010) AT_CHLORO, a comprehensive chloroplast proteome database with subplastidial localization and curated information on envelope proteins. Mol Cell Proteomics 9(6):1063–1084

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Bruley C, Dupierris V, Salvi D et al (2012) AT_CHLORO: a chloroplast protein database dedicated to sub-Plastidial localization. Front Plant Sci 3:205

    PubMed  PubMed Central  Google Scholar 

  25. Tomizioli M, Lazar C, Brugière S et al (2014) Deciphering thylakoid sub-compartments using a mass spectrometry-based approach. Mol Cell Proteomics 13(8):2147–2167

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Salvi D, Bournais S, Moyet L et al (2018) AT_CHLORO: the first step when looking for information about subplastidial localization of proteins. Methods Mol Biol 1829:395–406

    CAS  PubMed  Google Scholar 

  27. Bouchnak I, Brugière S, Moyet L et al (2019) Unraveling hidden components of the chloroplast envelope proteome: opportunities and limits of better MS sensitivity. Mol Cell Proteomics 18(7):1285–1306

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Joshi HJ, Hirsch-Hoffmann M, Baerenfaller K et al (2011) MASCP Gator: an aggregation portal for the visualization of Arabidopsis proteomics data. Plant Physiol 155(1):259–270

    CAS  PubMed  Google Scholar 

  29. van Wijk KJ, Leppert T, Sun Q et al (2021) The Arabidopsis PeptideAtlas: harnessing worldwide proteomics data to create a comprehensive community proteomics resource. Plant Cell 33(11):3421–3453

    PubMed  PubMed Central  Google Scholar 

  30. Mladenov P, Zasheva D, Planchon S et al (2022) Proteomics evidence of a systemic response to desiccation in the resurrection plant Haberlea rhodopensis. Int J Mol Sci 23(15):8520

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Gloaguen P, Bournais S, Alban C et al (2017) ChloroKB: a web application for the integration of knowledge related to chloroplast metabolic network. Plant Physiol 174(2):922–934

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Beardall J, Raven JA (2020) Structural and biochemical features of carbon acquisition in algae. In: Larkum A, Grossman A, Raven J (eds) Photosynthesis in algae: biochemical and physiological mechanisms. Advances in photosynthesis and respiration, vol 45. Springer

    Google Scholar 

  33. Uehlein N, Kai L, Kaldenhoff R (2017) Plant aquaporins and CO2. In: Chaumont F, Tyerman S (eds) Plant aquaporins. Signaling and communication in plants. Springer

    Google Scholar 

  34. Rolland N, Dorne AJ, Amoroso G, Sültemeyer DF, Joyard J, Rochaix JD (1997) Disruption of the plastid ycf10 open reading frame affects uptake of inorganic carbon in the chloroplast of Chlamydomonas. EMBO J 16:6713–6726

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Trinh MDL, Hashimoto A, Kono M et al (2021) Lack of plastid-encoded Ycf10, a homolog of the nuclear-encoded DLDG1 and the cyanobacterial PxcA, enhances the induction of non-photochemical quenching in tobacco. Plant Direct 5(12):e368

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Förster B, Rourke LM, Weerasooriya HN et al (2023) The Chlamydomonas reinhardtii chloroplast envelope protein LCIA transports bicarbonate in planta. J Exp Bot 74(12):3651–3666

    PubMed  Google Scholar 

  37. Flügge UI, Fischer K, Gross A et al (1989) The triose phosphate-3-phosphoglyceratephosphate translocator from spinach chloroplasts: nucleotide sequence of a full-length cDNA clone and import of the in vitro synthesized precursor protein into chloroplasts. EMBO J 8:39–46

    PubMed  PubMed Central  Google Scholar 

  38. Huang W, Krishnan A, Plett A et al (2023) Chlamydomonas mutants lacking chloroplast TRIOSE PHOSPHATE TRANSPORTER3 are metabolically compromised and light sensitive. Plant Cell 35(7):2592–2614

    PubMed  Google Scholar 

  39. MacNeill GJ, Mehrpouyan S, Minow MAA et al (2017) Starch as a source, starch as a sink: the bifunctional role of starch in carbon allocation. J Exp Bot 68:4433–4453

    CAS  PubMed  Google Scholar 

  40. Niittylä T, Messerli G, Trevisan M et al (2004) A previously unknown maltose transporter essential for starch degradation in leaves. Science 303:87–89

    PubMed  Google Scholar 

  41. Facchinelli F, Weber AP (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:50

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Weber APM, Schwacke R, Flugge UI (2005) Solute transporters of the plastid envelope membrane. Annu Rev Plant Biol 56:133–164

    PubMed  Google Scholar 

  43. Oh YJ, Hwang I (2015) Targeting and biogenesis of transporters and channels in chloroplast envelope membranes: unsolved questions. Cell Calcium 58:122–130

    CAS  PubMed  Google Scholar 

  44. Widhalm JR, Gutensohn M, Yoo H et al (2015) Identification of a plastidial phenylalanine exporter that influences flux distribution through the phenylalanine biosynthetic network. Nat Commun 6:8142

    PubMed  Google Scholar 

  45. Renné P, Dressen U, Hebbeker U et al (2003) The Arabidopsis mutant dct is deficient in the plastidic glutamate/malate translocator DiT2. Plant J 35:316–331

    PubMed  Google Scholar 

  46. Kinoshita H, Nagasaki J, Yoshikawa N et al (2011) The chloroplastic 2-oxoglutarate/malate transporter has dual function as the malate valve and in carbon/nitrogen metabolism. Plant J 65:15–26

    CAS  PubMed  Google Scholar 

  47. Muñoz P, Munné-Bosch S (2019) Vitamin E in plants: biosynthesis, transport, and function. Trends Plant Sci 24(11):1040–1051

    PubMed  Google Scholar 

  48. Sun T, Yuan H, Cao H et al (2018) Carotenoid metabolism in plants: the role of plastids. Mol Plant 11:58–74

    PubMed  Google Scholar 

  49. Siddiqi KS, Husen A (2017) Plant response to strigolactones: current developments and emerging trends. Appl Soil Ecol 120:247–253

    Google Scholar 

  50. Joyard J, Ferro M, Masselon C et al (2009) Chloroplast proteomics and the compartmentation of plastidial isoprenoid biosynthetic pathways. Mol Plant 2(6):1154–1180

    CAS  PubMed  Google Scholar 

  51. Kim HU (2020) Lipid metabolism in plants. Plants 9(7):871

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Hernández ML, Cejudo FJ (2021) Chloroplast lipids metabolism and function: a redox perspective. Front Plant Sci 12:712022

    PubMed  PubMed Central  Google Scholar 

  53. Karki N, Johnson BS, Bates PD (2019) Metabolically distinct pools of phosphatidylcholine are involved in trafficking of fatty acids out of and into the chloroplast for membrane production. Plant Cell 31(11):2768–2788

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Hölzl G, Dörmann P (2019) Chloroplast lipids and their biosynthesis. Annu Rev Plant Biol 70:51–81

    PubMed  Google Scholar 

  55. Dorne AJ, Joyard J, Block MA et al (1985) Localization of phosphatidylcholine in outer envelope membrane of spinach-chloroplasts. J Cell Biol 100:1690–1697

    CAS  PubMed  Google Scholar 

  56. Joyard J, Ferro M, Masselon C et al (2010) Chloroplast proteomics highlights the subcellular compartmentation of lipid metabolism. Prog Lipid Res 49:128–158

    CAS  PubMed  Google Scholar 

  57. Michaud M, Jouhet J (2019) Lipid trafficking at membrane contact sites during plant development and stress response. Front Plant Sci 10:2

    PubMed  PubMed Central  Google Scholar 

  58. Jouhet J, Maréchal E, Baldan B et al (2004) Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J Cell Biol 167:863–874

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Honda S, Yamazaki Y, Mukada T et al (2023) Lipidome profiling of phosphorus deficiency-tolerant rice cultivars reveals remodeling of membrane lipids as a mechanism of low P tolerance. Plants 12(6):1365

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Li J, Su Y, Shapiro CA, Schachtman DP et al (2023) Phosphate deficiency modifies lipid composition and seed oil production in camelina. Plant Sci 330:111636

    CAS  PubMed  Google Scholar 

  61. Andreou A, Brodhun F, Feussner I (2009) Biosynthesis of oxylipins in non-mammals. Prog Lipid Res 48:148–170

    CAS  PubMed  Google Scholar 

  62. Shafi SM, Egbuna C, Adetunji CO Phyto-Oxylipins (2023) Metabolism, physiological roles, and profiling techniques. CRC press, Boca Raton

    Google Scholar 

  63. Xu C, Fan J, Shanklin J (2020) Metabolic and functional connections between cytoplasmic and chloroplast triacylglycerol storage. Prog Lipid Res 80:101069

    CAS  PubMed  Google Scholar 

  64. Cook R, Lupette J, Benning C (2021) The role of chloroplast membrane lipid metabolism in plant environmental responses. Cell 10(3):706

    CAS  Google Scholar 

  65. Subki A, Ardi Zainal Abidin A, Norhana Balia Yusof Z (2018) The role of thiamine in plants and current perspectives in crop improvement. In: JG LB, Savoy de Giori G (eds) B group vitamins – current uses and perspectives. IntechOpen. https://doi.org/10.5772/intechopen.79350

    Chapter  Google Scholar 

  66. Fitzpatrick TB, Chapman LM (2020) The importance of thiamine (vitamin B1) in plant health: from crop yield to biofortification. J Biol Chem 295(34):12002–12013

    CAS  PubMed  PubMed Central  Google Scholar 

  67. Azevedo RA, Lancien M, Lea PJ (2006) The aspartic acid metabolic pathway, an exciting and essential pathway in plants. Amino Acids 30:143–162

    CAS  PubMed  Google Scholar 

  68. Beaudoin GAW, Johnson TS, Hanson AD (2018) The PLUTO plastidial nucleobase transporter also transports the thiamin precursor hydroxymethylpyrimidine. Biosci Rep 38(2):BSR20180048

    CAS  PubMed  PubMed Central  Google Scholar 

  69. Martins-Noguerol R, Acket S, Troncoso-Ponce MA et al (2021) Characterization of Helianthus annuus lipoic acid biosynthesis: the mitochondrial octanoyltransferase and lipoyl synthase enzyme system. Front Plant Sci 12:781917

    PubMed  PubMed Central  Google Scholar 

  70. Sa N, Rawat R, Thornburg C et al (2016) Identification and characterization of the missing phosphatase on the riboflavin biosynthesis pathway in Arabidopsis thaliana. Plant J 88:705–716

    CAS  PubMed  Google Scholar 

  71. Hasanuzzaman M, Bhuyan MHMB, Anee TI et al (2019) Regulation of ascorbate-glutathione pathway in mitigating oxidative damage in plants under abiotic stress. Antioxidants 8(9):384

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Miyaji T, Kuromori T, Takeuchi Y et al (2015) AtPHT4;4 is a chloroplast-localized ascorbate transporter in Arabidopsis. Nat Commun 6:5928

    CAS  PubMed  Google Scholar 

  73. Maughan SC, Pasternak M, Cairns N et al (2010) Plant homologs of the Plasmodium falciparum chloroquine-resistance transporter, PfCRT, are required for glutathione homeostasis and stress responses. Proc Natl Acad Sci USA 107(5):2331–2336

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Gorelova V, Ambach L, Rébeillé F et al (2017) Folates in plants: research advances and progress in crop biofortification. Front Chem 5:00021

    Google Scholar 

  75. Bedhomme M, Hoffmann M, McCarthy EA et al (2005) Folate metabolism in plants: an Arabidopsis homolog of the mammalian mitochondrial folate transporter mediates folate import into chloroplasts. J Biol Chem 280(41):34823–34831

    CAS  PubMed  Google Scholar 

  76. Klaus SM, Kunji ER, Bozzo GG et al (2005) Higher plant plastids and cyanobacteria have folate carriers related to those of trypanosomatids. J Biol Chem 280(46):38457–38463

    CAS  PubMed  Google Scholar 

  77. Watanabe M, Chiba Y, Hirai MY (2021) Metabolism and regulatory functions of O-acetylserine, S-adenosylmethionine, homocysteine, and serine in plant development and environmental responses. Front Plant Sci 12:643403

    PubMed  PubMed Central  Google Scholar 

  78. Alban C (2011) Biotin (vitamin B8) synthesis in plants. Adv Bot Res, 59:39–66. Rébeillé F, Douce R (Eds) Academic Press, Cambridge

    Google Scholar 

  79. Liu Z, Farkas P, Wang K et al (2022) B vitamin supply in plants and humans: the importance of vitamer homeostasis. Plant J 111(3):662–682

    CAS  PubMed  PubMed Central  Google Scholar 

  80. Webb ME, Smith AG (2011) Pantothenate biosynthesis in higher plants. Adv Bot Res 58:203–255. Rébeillé F, Douce R (Eds), Academic Press

    CAS  Google Scholar 

  81. Zallot R, Agrimi G, Lerma-Ortiz C et al (2013) Identification of mitochondrial coenzyme a transporters from maize and Arabidopsis. Plant Physiol 162(2):581–588

    CAS  PubMed  PubMed Central  Google Scholar 

  82. Huang L, Pyc M, Alseekh S et al (2018) A plastidial pantoate transporter with a potential role in pantothenate synthesis. Biochem J 475(4):813–825

    CAS  PubMed  Google Scholar 

  83. Gakière B, Hao J, de Bont L et al (2018) NAD+ biosynthesis and signaling in plants. Crit Rev Plant Sci 37(4):259–307

    Google Scholar 

  84. Palmieri F, Rieder B, Ventrella A et al (2009) Molecular identification and functional characterization of Arabidopsis thaliana mitochondrial and chloroplastic NAD+ carrier proteins. J Biol Chem 284:31249–31259

    CAS  PubMed  PubMed Central  Google Scholar 

  85. da Fonseca-Pereira P, de Cássia M-BR, Araújo WL et al (2023) Harnessing enzyme cofactors and plant metabolism: an essential partnership. Plant J 114(5):1014–1036

    PubMed  Google Scholar 

  86. Finazzi G, Petroutsos D, Tomizioli M et al (2015) Ions channels/transporters and chloroplast regulation. Cell Calcium 58(1):86–97

    CAS  PubMed  Google Scholar 

  87. Xu H, Martinoia E, Szabo I (2015) Organellar channels and transporters. Cell Calcium 58(1):1–10

    PubMed  PubMed Central  Google Scholar 

  88. López-Millán AF, Duy D, Philippar K (2016) Chloroplast iron transport proteins – function and impact on plant physiology. Front Plant Sci 7:178

    PubMed  PubMed Central  Google Scholar 

  89. Szabò I, Spetea C (2017) Impact of the ion transportome of chloroplasts on the optimization of photosynthesis. J Exp Bot 68(12):3115–3128

    PubMed  Google Scholar 

  90. Marchand J, Heydarizadeh P, Schoefs B et al (2018) Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 75:2153–2176

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Zhao C, Haigh AM, Holford P et al (2018) Roles of chloroplast retrograde signals and ion transport in plant drought tolerance. Int J Mol Sci 19(4):963

    PubMed  PubMed Central  Google Scholar 

  92. Kunz HH, Gierth M, Herdean A et al (2014) Plastidial transporters KEA1, -2, and -3 are essential for chloroplast osmoregulation, integrity, and pH regulation in Arabidopsis. Proc Natl Acad Sci USA 111(20):7480–7485

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Aranda-Sicilia MN, Aboukila A, Armbruster U et al (2016) Envelope K+/H+ antiporters AtKEA1 and AtKEA2 function in plastid development. Plant Physiol 172(1):441–449

    CAS  PubMed  PubMed Central  Google Scholar 

  94. Aranda Sicilia MN, Sanchez Romero ME, Rodriguez Rosales MP et al (2021) Plastidial transporters KEA1 and KEA2 at the inner envelope membrane adjust stromal pH in the dark. New Phytol 229:2080–2090

    CAS  PubMed  Google Scholar 

  95. deTar RA, Barahimipour R, Manavski N et al (2021) Loss of inner-envelope K+/H+ exchangers impairs plastid rRNA maturation and gene expression. Plant Cell 33:2479–2505

    PubMed  PubMed Central  Google Scholar 

  96. Boutigny S, Sautron E, Finazzi G et al (2014) HMA1 and PAA1, two chloroplast-envelope PIB-ATPases, play distinct roles in chloroplast copper homeostasis. J Exp Bot 65(6):1529–1540

    CAS  PubMed  Google Scholar 

  97. Sautron E, Mayerhofer H, Giustini C et al (2015) HMA6 and HMA8 are two chloroplast Cu+-ATPases with different enzymatic properties. Biosci Rep 35(3):e00201

    PubMed  PubMed Central  Google Scholar 

  98. Sautron E, Giustini C, Dang T et al (2016) Identification of two conserved residues involved in copper release from chloroplast PIB-1-ATPases. J Biol Chem 291(38):20136–20148

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Maeda S, Konishi M, Yanagisawa S et al (2014) Nitrite transport activity of a novel HPP family protein conserved in cyanobacteria and chloroplasts. Plant Cell Physiol 55(7):1311–1324

    CAS  PubMed  Google Scholar 

  100. Goetze TA, Patil M, Jeshen I et al (2015) Oep23 forms an ion channel in the chloroplast outer envelope. BMC Plant Biol 15:47

    PubMed  PubMed Central  Google Scholar 

  101. Eisenhut M, Hoecker N, Schmidt SB et al (2018) The plastid envelope CHLOROPLAST MANGANESE TRANSPORTER1 is essential for manganese homeostasis in Arabidopsis. Mol Plant 11:955–969

    CAS  PubMed  Google Scholar 

  102. Zhang B, Zhang C, Liu C et al (2018) Inner envelope CHLOROPLAST MANGANESE TRANSPORTER 1 supports manganese homeostasis and phototrophic growth in Arabidopsis. Mol Plant 11:943–954

    CAS  PubMed  Google Scholar 

  103. Teardo E, Carraretto L, Moscatiello R et al (2019) A chloroplast-localized mitochondrial calcium uniporter transduces osmotic stress in Arabidopsis. Nat Plants 5(6):581–588

    CAS  PubMed  Google Scholar 

  104. Völkner C, Holzner LJ, Day PM et al (2021) Two plastid POLLUX ion channel-like proteins are required for stress-triggered stromal Ca2+release. Plant Physiol 187(4):2110–2125

    PubMed  PubMed Central  Google Scholar 

  105. Zhang B, Zhang C, Tang R et al (2022) Two magnesium transporters in the chloroplast inner envelope essential for thylakoid biogenesis in Arabidopsis. New Phytol 236(2):464–478

    CAS  PubMed  Google Scholar 

  106. Tang L, Xiao L, Chen E et al (2023) Magnesium transporter CsMGT10 of tea plants plays a key role in chlorosis leaf vein greening. Plant Physiol Biochem 201:107842

    CAS  PubMed  Google Scholar 

Download references

Acknowledments

The authors regret the omission of many relevant citations due to space constraints. This work was supported by the CNRS, INRAE, the French Agence Nationale de la Recherche (ANR-18-CE12–0021-01 “Polyglot” and ANR-22-CE12–0012-01 “C-Trap”) and the Labex GRAL, funded within the University Grenoble Alpes graduate school (Ecoles Universitaires de Recherche) CBH-EUR-GS (ANR-17-EURE-0003). L.D. got a fellowship from “Polyglot” and S.P. got a fellowship from “C-Trap.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Kuntz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kuntz, M., Dimnet, L., Pullara, S., Moyet, L., Rolland, N. (2024). The Main Functions of Plastids. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 2776. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3726-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3726-5_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3725-8

  • Online ISBN: 978-1-0716-3726-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics