Skip to main content

Complex Endosymbiosis II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2776))

  • 360 Accesses

Abstract

Chloroplasts are essential organelles that are responsible for photosynthesis in a wide range of organisms that have colonized all biotopes on Earth such as plants and unicellular algae. Interestingly, a secondary endosymbiotic event of a red algal ancestor gave rise to a group of organisms that have adopted an obligate parasitic lifestyle named Apicomplexa parasites. Apicomplexa parasites are some of the most widespread and poorly controlled pathogens in the world. These infectious agents are responsible for major human diseases such as toxoplasmosis, caused by Toxoplasma gondii, and malaria, caused by Plasmodium spp. Most of these parasites harbor this relict plastid named the apicoplast, which is essential for parasite survival. The apicoplast has lost photosynthetic capacities but is metabolically similar to plant and algal chloroplasts. The apicoplast is considered a novel and important drug target against Apicomplexa parasites. This chapter focuses on the apicoplast of apicomplexa parasites, its maintenance, and its metabolic pathways.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 27 April 2024

    A correction has been published.

References

  1. Kloehn J, Lacour CE, Soldati-Favre D (2021) The metabolic pathways and transporters of the plastid organelle in Apicomplexa. Curr Opin Microbiol 63:250–258

    Article  CAS  PubMed  Google Scholar 

  2. He CY, Shaw MK, Pletcher CH et al (2001) A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J 20(3):330–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Botté CY, Dubar F, McFadden GI et al (2012) Plasmodium falciparum apicoplast drugs: targets or off-targets? Chem Rev 112(3):1269–1283

    Article  PubMed  Google Scholar 

  4. Kohler S, Delwiche CF, Denny PW et al (1997) A plastid of probable green algal origin in Apicomplexan parasites. Science 275(5305):1485

    Article  CAS  PubMed  Google Scholar 

  5. McFadden GI, Reith ME, Munholland J et al (1996) Plastid in human parasites. Nature 381(6582):482

    Article  CAS  PubMed  Google Scholar 

  6. Wilson RJ, Denny PW, Preiser PR et al (1996) Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J Mol Biol 261(2):155–172

    Article  CAS  PubMed  Google Scholar 

  7. Janouskovec J, Horak A, Obornik M et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci USA 107(24):10949

    Article  PubMed  PubMed Central  Google Scholar 

  8. Zhu G, Marchewska MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146(2):315

    Article  CAS  PubMed  Google Scholar 

  9. Fichera ME, Roos DS (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390(6658):407–409

    Article  CAS  PubMed  Google Scholar 

  10. Botte CY, Yamaryo-Botte Y, Rupasinghe TWT et al (2013) Atypical lipid composition in the purified relict plastid (apicoplast) of malaria parasites. Proc Natl Acad Sci USA 110(18):7506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Ralph SA, van Dooren GG, Waller RF et al (2004) Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat Rev Microbiol 2(3):203–216

    Article  CAS  PubMed  Google Scholar 

  12. Boucher MJ, Yeh E (2019) Plastid-endomembrane connections in apicomplexan parasites. PLoS Pathog 15(6):e1007661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517

    Article  CAS  PubMed  Google Scholar 

  14. Tawk L, Dubremetz JF, Montcourrier P et al (2011) Phosphatidylinositol 3-monophosphate is involved in toxoplasma apicoplast biogenesis. PLoS Pathog 7(2):e1001286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. van Dooren GG, Kennedy AT, McFadden GI (2012) The use and abuse of heme in apicomplexan parasites. Antioxid Redox Signal 17(4):634–656

    Article  PubMed  Google Scholar 

  16. Kloehn J, Harding CR, Soldati-Favre D (2021) Supply and demand—heme synthesis, salvage and utilization by Apicomplexa. FEBS J 288(2):382–404

    Article  CAS  PubMed  Google Scholar 

  17. Nagaraj VA, Sundaram B, Varadarajan NM et al (2013) Malaria parasite-synthesized heme is essential in the mosquito and liver stages and complements host heme in the blood stages of infection. PLoS Pathog 9(8):e1003522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Renaud EA, Pamukcu S, Cerutti A et al (2022) Disrupting the plastidic iron-sulfur cluster biogenesis pathway in Toxoplasma gondii has pleiotropic effects irreversibly impacting parasite viability. J Biol Chem 298(8):102243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Balk J, Pilon M (2011) Ancient and essential: the assembly of iron-sulfur clusters in plants. Trends Plant Sci 16(4):218–226

    Article  CAS  PubMed  Google Scholar 

  20. Haussig JM, Matuschewski K, Kooij TWA (2013) Experimental genetics of Plasmodium berghei NFU in the apicoplast iron-sulfur cluster biogenesis pathway. PLoS One 8(6):e67269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Swift RP, Elahi R, Rajaram K et al (2023) The Plasmodium falciparum apicoplast cysteine desulfurase provides sulfur for both iron-sulfur cluster assembly and tRNA modification. elife 12:e84491. https://doi.org/10.7554/eLife.84491

    Article  PubMed  PubMed Central  Google Scholar 

  22. Yeh E, DeRisi JL (2011) Chemical rescue of malaria parasites lacking an apicoplast defines organelle function in blood-stage plasmodium falciparum. PLoS Biol 9(8):e1001138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sidik SM, Huet D, Ganesan SM et al (2016) A genome-wide CRISPR screen in toxoplasma identifies essential apicomplexan genes. Cell 166(6):1423–1435.e12. https://doi.org/10.1016/j.cell.2016.08.019. Epub 2016 Sep 2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Swift RP, Rajaram K, Keutcha C et al (2020) The NTP generating activity of pyruvate kinase II is critical for apicoplast maintenance in Plasmodium falciparum. elife 9:e50807. https://doi.org/10.7554/eLife.50807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Niu Z, Ye S, Liu J et al (2022) Two apicoplast dwelling glycolytic enzymes provide key substrates for metabolic pathways in the apicoplast and are critical for toxoplasma growth. PLoS Pathog 18(11):e1011009. https://doi.org/10.1371/journal.ppat.1011009. PMID: 36449552; PMCID: PMC9744290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Mombo-Ngoma G, Remppis J, Sievers M et al (2018) Efficacy and safety of Fosmidomycin–Piperaquine as Nonartemisinin-based combination therapy for uncomplicated Falciparum malaria: a single-arm, age De-escalation proof-of-concept study in gabon. Clin Infect Dis 66(12):1823–1830

    Article  CAS  PubMed  Google Scholar 

  27. Okada M, Rajaram K, Swift RP et al (2022) Critical role for isoprenoids in apicoplast biogenesis by malaria parasites. elife 11:e73208

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Suazo KF, Schaber C, Palsuledesai CC et al (2016) Global proteomic analysis of prenylated proteins in Plasmodium falciparum using an alkyne-modified isoprenoid analogue. Sci Rep 6:38615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Gisselberg JE, Zhang L, Elias JE et al (2017) The prenylated proteome of Plasmodium falciparum reveals pathogen-specific prenylation activity and drug mechanism-of-action. Mol Cell Proteomics 16(4):S54–S64

    Article  CAS  PubMed  Google Scholar 

  30. MacRae JI, Maréchal E, Biot C et al (2012) The apicoplast: a key target to cure malaria. Curr Pharm Des 18(24):3490–3504

    CAS  PubMed  Google Scholar 

  31. Yu M, Kumar TRS, Nkrumah LJ et al (2008) The fatty acid biosynthesis enzyme FabI plays a key role in the development of liver-stage malarial parasites. Cell Host Microbe 4(6):567–578

    Article  PubMed  PubMed Central  Google Scholar 

  32. Vaughan AM, O'Neill MT, Tarun AS et al (2009) Type II fatty acid synthesis is essential only for malaria parasite late liver stage development. Cell Microbiol 11(3):506

    Article  CAS  PubMed  Google Scholar 

  33. Amiar S, Katris NJ, Berry L et al (2020) Division and adaptation to host environment of apicomplexan parasites depend on apicoplast lipid metabolic plasticity and host organelle remodeling. Cell Rep 30(11):3778–3792.e9

    Article  CAS  PubMed  Google Scholar 

  34. Shunmugam S, Arnold CS, Dass S et al (2022) The flexibility of Apicomplexa parasites in lipid metabolism. PLOS Pathog 18(3):e1010313

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Dass S, Shunmugam S, Berry L et al (2021) Toxoplasma LIPIN is essential in channeling host lipid fluxes through membrane biogenesis and lipid storage. Nat Commun 12(1):2813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Amiar S, MacRae JI, Callahan DL et al (2016) Apicoplast-localized lysophosphatidic acid precursor assembly is required for bulk phospholipid synthesis in Toxoplasma gondii and relies on an algal/plant-like glycerol 3-phosphate acyltransferase. PLoS Pathog 12(8):e1005765

    Article  PubMed  PubMed Central  Google Scholar 

  37. Shears MJ, MacRae JI, Mollard V et al (2017) Characterization of the Plasmodium falciparum and P. berghei glycerol 3-phosphate acyltransferase involved in FASII fatty acid utilization in the malaria parasite apicoplast. Cell Microbiol 19(1):e12633

    Article  PubMed  Google Scholar 

  38. Lindner SE, Sartain MJ, Hayes K et al (2014) Enzymes involved in plastid-targeted phosphatidic acid synthesis are essential for Plasmodium yoelii liver-stage development. Mol Microbiol 91(4):679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work and their authors were supported by Agence Nationale de la Recherche, France (Project ApicoLipiAdapt grant ANR-21-CE44-0010; Project Apicolipidtraffic grant ANR-23-CE15-0009-01), The Fondation pour la Recherche MÕdicale (FRM EQU202103012700), Laboratoire d’Excellence Parafrap, France (grant ANR-11-LABX-0024), LIA-IRP CNRS Program (Apicolipid project), the Université Grenoble Alpes (IDEX ISP Apicolipid) and Région Auvergne Rhone-Alpes for the lipidomics analyses platform (Grant IRICE Project GEMELI), Collaborative Research Program Grant CEFIPRA (Project 6003-1) by the CEFIPRA (MESRI-DBT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cyrille Y. Botté .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Quansah, N., Charital, S., Yamaryo-Botté, Y., Botté, C.Y. (2024). Complex Endosymbiosis II: The Nonphotosynthetic Plastid of Apicomplexa Parasites (The Apicoplast) and Its Integrated Metabolism. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 2776. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3726-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3726-5_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3725-8

  • Online ISBN: 978-1-0716-3726-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics