Skip to main content

Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events

  • Protocol
  • First Online:
Plastids

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2776))

Abstract

A considerable part of the diversity of eukaryotic phototrophs consists of algae with plastids that evolved from endosymbioses between two eukaryotes. These complex plastids are characterized by a high number of envelope membranes (more than two) and some of them contain a residual nucleus of the endosymbiotic alga called a nucleomorph. Complex plastid-bearing algae are thus chimeric cell assemblies, eukaryotic symbionts living in a eukaryotic host. In contrast, the primary plastids of the Archaeplastida (plants, green algae, red algae, and glaucophytes) possibly evolved from a single endosymbiosis with a cyanobacterium and are surrounded by two membranes. Complex plastids have been acquired several times by unrelated groups of eukaryotic heterotrophic hosts, suggesting that complex plastids are somewhat easier to obtain than primary plastids. Evidence suggests that complex plastids arose twice independently in the green lineage (euglenophytes and chlorarachniophytes) through secondary endosymbiosis, and four times in the red lineage, first through secondary endosymbiosis in cryptophytes, then by higher-order events in stramenopiles, alveolates, and haptophytes. Engulfment of primary and complex plastid-containing algae by eukaryotic hosts (secondary, tertiary, and higher-order endosymbioses) is also responsible for numerous plastid replacements in dinoflagellates. Plastid endosymbiosis is accompanied by massive gene transfer from the endosymbiont to the host nucleus and cell adaptation of both endosymbiotic partners, which is related to the trophic switch to phototrophy and loss of autonomy of the endosymbiont. Such a process is essential for the metabolic integration and division control of the endosymbiont in the host. Although photosynthesis is the main advantage of acquiring plastids, loss of photosynthesis often occurs in algae with complex plastids. This chapter summarizes the essential knowledge of the acquisition, evolution, and function of complex plastids.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oborník M (2019) In the beginning was the word: how terminology drives our understanding of endosymbiotic organelles. Microb Cell 6:134–141. https://doi.org/10.15698/mic2019.02.669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Keeling PJ (2013) The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annu Rev Plant Biol 64:583–607. https://doi.org/10.1146/annurev-arplant-050312-120144

    Article  CAS  PubMed  Google Scholar 

  3. Nowack ECM, Melkonian M, Glöckner G (2008) Chromatophore genome sequence of Paulinella sheds light on acquisition of photosynthesis by eukaryotes. Curr Biol 18:410–418. https://doi.org/10.1016/j.cub.2008.02.051

    Article  CAS  PubMed  Google Scholar 

  4. Armbrust EV, Berges JA, Bowler C et al (2004) The genome of the diatom Thalassiosira pseudonana: ecology, evolution, and metabolism. Science 306:79–86. https://doi.org/10.1126/science.1101156

    Article  CAS  PubMed  Google Scholar 

  5. Burki F, Kaplan M, Tikhonenkov DV et al (2016) Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista. Proc R Soc B 283:20152802. https://doi.org/10.1098/rspb.2015.2802

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Petersen J, Ludewig AK, Michael V et al (2014) Chromera velia, endosymbioses and the rhodoplex hypothesis – plastid evolution in cryptophytes, alveolates, stramenopiles, and haptophytes (CASH lineages). Genom Biol Evol 6:666–684. https://doi.org/10.1093/gbe/evu043

    Article  CAS  Google Scholar 

  7. Derelle R, Torruella G, Klimeš V et al (2015) Bacterial proteins pinpoint a single eukaryotic root. Proc Natl Acad Sci U S A 112:E693–E699. https://doi.org/10.1073/pnas.1420657112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hurst GDD (2017) Extended genomes: symbiosis and evolution. Interface Focus 7:20170001. https://doi.org/10.1098/rsfs.2017.0001

    Article  PubMed  PubMed Central  Google Scholar 

  9. Sibbald SJ, Cenci U, Colp M et al (2017) Diversity and evolution of Paramoeba spp. and their kinetoplastid endosymbionts. J Euk Microbiol 64:598–607. https://doi.org/10.1111/jeu.12394

    Article  CAS  PubMed  Google Scholar 

  10. Schön ME, Zlatogursky VV, Singh RP et al (2021) Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae. Nat Commun 12:6651. https://doi.org/10.1038/s41467-021-26918-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cavalier-Smith T (1999) Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J Euk Microbiol 46:347–366. https://doi.org/10.1111/j.1550-7408.1999.tb04614.x

    Article  CAS  PubMed  Google Scholar 

  12. Stiller JW (2014) Toward an empirical framework for interpreting plastid evolution. J Phycol 50:462–471. https://doi.org/10.1111/jpy.12178

    Article  PubMed  Google Scholar 

  13. Füssy Z, Oborník M (2017) Chromerids and their plastids. Adv Bot Res 84:187–218. https://doi.org/10.1016/bs.abr.2017.07.001

    Article  CAS  Google Scholar 

  14. Dorrell RG, Bowler C (2017) Secondary plastids of stramenopiles. Adv Bot Res 84:57–103. https://doi.org/10.1016/bs.abr.2017.06.003

    Article  CAS  Google Scholar 

  15. Falkowski PG, Katz ME, Knoll AH et al (2004) The evolution of modern eukaryotic phytoplankton. Science 305:354–360. https://doi.org/10.1126/science.1095964

    Article  CAS  PubMed  Google Scholar 

  16. Baurain D, Brinkmann H, Petersen J et al (2010) Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Mol Biol Evol 27:1698–1709. https://doi.org/10.1093/molbev/msq059

    Article  CAS  PubMed  Google Scholar 

  17. Wegener Parfrey L, Lahr DJG, Knoll AH, Katz LA (2011) Estimating the timing of early eukaryotic diversification with multigene molecular clocks. Proc Natl Acad Sci U S A 108:13624–13629. https://doi.org/10.1073/pnas.1110633108

    Article  CAS  Google Scholar 

  18. Curtis BA, Tanifuji G, Burki F et al (2012) Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature 492:59–65. https://doi.org/10.1038/nature11681

    Article  CAS  PubMed  Google Scholar 

  19. Dorrell RRG, Howe CJC (2015) Integration of plastids with their hosts: lessons learned from dinoflagellates. Proc Natl Acad Sci U S A 112:201421380. https://doi.org/10.1073/pnas.1421380112

    Article  CAS  Google Scholar 

  20. Oborník M, Lukeš J (2015) The organellar genomes of Chromera and Vitrella, the phototrophic relatives of apicomplexan parasites. Annu Rev Microbiol 69:129–144. https://doi.org/10.1146/annurev-micro-091014-104449

    Article  CAS  PubMed  Google Scholar 

  21. Stiller JW, Schreiber J, Yue J et al (2014) The evolution of photosynthesis in chromist algae through serial endosymbioses. Nat Commun 5:5764. https://doi.org/10.1038/ncomms6764

    Article  CAS  PubMed  Google Scholar 

  22. Bodył A (2018) Did some red alga-derived plastids evolve via kleptoplastidy? A hypothesis. Biol Rev 93:201–222. https://doi.org/10.1111/brv.12340

    Article  PubMed  Google Scholar 

  23. Novák Vanclová AMG, Dorrell R (2023) Complex plastids across the eukaryotes: an overview of inherited and convergently evolved characters. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham

    Google Scholar 

  24. Dorrell RG, Gile G, McCallum G et al (2017) Chimeric origins of ochrophytes and haptophytes revealed through an ancient plastid proteome. eLife 6:e23717. https://doi.org/10.7554/eLife.23717

    Article  PubMed  PubMed Central  Google Scholar 

  25. Dorrell RG, Villain A, Perez-Lamarque B et al (2021) Phylogenomic fingerprinting of tempo and functions of horizontal gene transfer within ochrophytes. Proc Natl Acad Sci U S A 118:e2009974118. https://doi.org/10.1073/pnas.2009974118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Janouškovec J, Horák A, Oborník M et al (2010) A common red algal origin of the apicomplexan, dinoflagellate, and heterokont plastids. Proc Natl Acad Sci U S A 107:10949–10954. https://doi.org/10.1073/pnas.1003335107

    Article  PubMed  PubMed Central  Google Scholar 

  27. Ševčíková T, Horák A, Klimeš V et al (2015) Updating algal evolutionary relationships through plastid genome sequencing: did alveolate plastids emerge through endosymbiosis of an ochrophyte? Sci Rep 5:10134. https://doi.org/10.1038/srep10134

    Article  PubMed  PubMed Central  Google Scholar 

  28. Sobotka R, Esson HJ, Koník P et al (2017) Extensive gain and loss of photosystem I subunits in chromerid algae, photosynthetic relatives of apicomplexans. Sci Rep 7:13214. https://doi.org/10.1038/s41598-017-13575-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Moore RB, Oborník M, Janouškovec J et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. https://doi.org/10.1038/nature06635

    Article  CAS  PubMed  Google Scholar 

  30. Oborník M, Modrý D, Lukeš M et al (2012) Morphology, ultrastructure and life cycle of Vitrella brassicaformis n. sp., n. gen., a novel chromerid from the Great Barrier Reef. Protist 163:306–323. https://doi.org/10.1016/j.protis.2011.09.001

    Article  PubMed  Google Scholar 

  31. Krishnan A, Soldati-Favre D (2021) Amino acid metabolism in apicomplexan parasites. Metabolites 11:61. https://doi.org/10.3390/metabo11020061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Waller RF, Kořený L (2017) Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Adv Bot Res 85:105–143. https://doi.org/10.1016/bs.abr.2017.07.004

    Article  Google Scholar 

  33. Sarai C, Tanifuji G, Nakayama T et al (2020) Dinoflagellates with relic endosymbiont nuclei as models for elucidating organellogenesis. Proc Natl Acad Sci U S A 117:5364–5375. https://doi.org/10.1073/pnas.1911884117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Novák Vanclová AMG, Nef C, Vancl A et al (2022) Divergent and diversified proteome content across a serially acquired plastid lineage. biorXiv. https://doi.org/10.1101/2022.11.30.518497

    Book  Google Scholar 

  35. Park MG, Kim M, Kim S (2014) The acquisition of plastids/phototrophy in heterotrophic dinoflagellates. Acta Protozool 53:39–50. https://doi.org/10.4467/16890027AP.14.005.1442

    Article  Google Scholar 

  36. Yamada N, Sym SD, Horiguchi T (2017) Identification of highly divergent diatom-derived chloroplasts in dinoflagellates, including a description of Durinskia kwazulunatalensis sp. nov. (Peridiniales, Dinophyceae). Mol Biol Evol 34:1335–1351. https://doi.org/10.1093/molbev/msx054

    Article  CAS  PubMed  Google Scholar 

  37. Jan M, Liu Z, Rochaix J-D, Sun X (2022) Retrograde and anterograde signaling in the crosstalk between chloroplast and nucleus. Front Plant Sci 13:980237. https://doi.org/10.3389/fpls.2022.980237

    Article  PubMed  PubMed Central  Google Scholar 

  38. McFadden GI (2014) Origin and evolution of plastids and photosynthesis in eukaryotes. Cold Spring Harbor Persp Biol 6:a016105. https://doi.org/10.1101/cshperspect.a016105

    Article  CAS  Google Scholar 

  39. Dorrell RG, Howe CJ (2012) What makes a chloroplast? Reconstructing the establishment of photosynthetic symbioses. J Cell Sci 125:1865–1875. https://doi.org/10.1242/jcs.102285

    Article  CAS  PubMed  Google Scholar 

  40. Zimorski V, Ku C, Martin WF, Gould SB (2014) Endosymbiotic theory for organelle origins. Curr Opin Microbiol 22:38–48. https://doi.org/10.1016/j.mib.2014.09.008

    Article  CAS  PubMed  Google Scholar 

  41. Gross J, Bhattacharya D (2009) Mitochondrial and plastid evolution in eukaryotes: an outsiders’ perspective. Nat Rev Genet 10:495–505. https://doi.org/10.1038/nrg2649

    Article  CAS  PubMed  Google Scholar 

  42. Tyra HM, Linka M, Weber APM, Bhattacharya D (2007) Host origin of plastid solute transporters in the first photosynthetic eukaryotes. Genome Biol 8:R212. https://doi.org/10.1186/gb-2007-8-10-r212

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Basak I, Moeller SG (2013) Emerging facets of plastid division regulation. Planta 237:389–398

    Article  CAS  PubMed  Google Scholar 

  44. Archibald JM (2015) Genomic perspectives on the birth and spread of plastids. Proc Natl Acad Sci U S A 112:10147–10153. https://doi.org/10.1073/pnas.1421374112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Konupková A, Tomečková L, Pašuthová K et al (2023) Easier lost than found? What we know about plastid genome reduction. In: Kroth P, Schwartzbach S, Oborník M (eds) Endosymbiotic organelle acquisition: solutions to the problem of protein localization and membrane passage. Springer, Cham

    Google Scholar 

  46. Collén J, Porcel B, Carré W et al (2013) Genome structure and metabolic features in the red seaweed Chondrus crispus shed light on evolution of the Archaeplastida. Proc Natl Acad Sci U S A 110:5247–5252. https://doi.org/10.1073/pnas.1221259110

    Article  PubMed  PubMed Central  Google Scholar 

  47. Fristedt R (2017) Chloroplast function revealed through analysis of GreenCut2 genes. J Exp Bot 68:2111–2120. https://doi.org/10.1093/jxb/erx082

    Article  CAS  PubMed  Google Scholar 

  48. Terashima M, Specht M, Hippler M (2011) The chloroplast proteome: a survey from the Chlamydomonas reinhardtii perspective with a focus on distinctive features. Curr Genet 57:151–168. https://doi.org/10.1007/s00294-011-0339-1

    Article  CAS  PubMed  Google Scholar 

  49. Gruber A, Rocap G, Kroth PG et al (2015) Plastid proteome prediction for diatoms and other algae with secondary plastids of the red lineage. Plant J 81:519–528. https://doi.org/10.1111/tpj.12734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Patron NJ, Waller RF (2007) Transit peptide diversity and divergence: a global analysis of plastid targeting signal. BioEssays 29:1048–1058. https://doi.org/10.1002/bies.20638

    Article  CAS  PubMed  Google Scholar 

  51. Sun Y, Jarvis RP (2023) Chloroplast proteostasis: import, sorting, ubiquitination, and proteolysis. Annu Rev Plant Biol 74:259–283. https://doi.org/10.1146/annurev-arplant-070122

    Article  CAS  PubMed  Google Scholar 

  52. Patron NJ, Waller RF, Archibald JM, Keeling PJ (2005) Complex protein targeting to dinoflagellate plastids. J Mol Biol 348:1015–1024. https://doi.org/10.1016/j.jmb.2005.03.030

    Article  CAS  PubMed  Google Scholar 

  53. Durnford DG, Gray MW (2006) Analysis of Euglena gracilis plastid-targeted proteins reveals different classes of transit sequences. Euk Cell 5:2079–2091. https://doi.org/10.1128/EC.00222-06

    Article  CAS  Google Scholar 

  54. Felsner G, Sommer MS, Gruenheit N et al (2011) ERAD components in organisms with complex red plastids suggest recruitment of a preexisting protein transport pathway for the periplastid membrane. Genom Biol Evol 3:140–150. https://doi.org/10.1093/gbe/evq074

    Article  CAS  Google Scholar 

  55. Hehenberger E, Burki F, Kolisko M, Keeling PJ (2016) Functional relationship between a dinoflagellate host and its diatom endosymbiont. Mol Biol Evol 33:2376–2390. https://doi.org/10.1093/molbev/msw109

    Article  CAS  PubMed  Google Scholar 

  56. Cavalier-Smith T (2000) Membrane heredity and early chloroplast evolution. Trends Plant Sci 5:174–182. https://doi.org/10.1016/S1360-1385(00)01598-3

    Article  CAS  PubMed  Google Scholar 

  57. Facchinelli F, Weber APM (2011) The metabolite transporters of the plastid envelope: an update. Front Plant Sci 2:1–18. https://doi.org/10.3389/fpls.2011.00050

    Article  CAS  Google Scholar 

  58. Mulkidjanian AY, Koonin EV, Makarova KS et al (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci U S A 103:13126–13131. https://doi.org/10.1073/pnas.0605709103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Smith SRS, Gillard JTF, Kustka ABAAB et al (2016) Transcriptional orchestration of the global cellular response of a model pennate diatom to diel light cycling under iron limitation. PLoS Genet 12:e1006490. https://doi.org/10.1371/journal.pgen.1006490

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Bailleul B, Berne N, Murik O et al (2015) Energetic coupling between plastids and mitochondria drives CO2 assimilation in diatoms. Nature 524:366–369. https://doi.org/10.1038/nature14599

    Article  CAS  PubMed  Google Scholar 

  61. Füssy Z, Faitová T, Oborník M (2019) Subcellular compartments interplay for carbon and nitrogen allocation in Chromera velia and Vitrella brassicaformis. Genom Biol Evol 11:1765–1779. https://doi.org/10.1093/gbe/evz123

    Article  CAS  Google Scholar 

  62. Doolittle WF (1998) You are what you eat: a gene transfer ratchet could account for bacterial genes in eukaryotic nuclear genomes. Trends Genet 14:307–311. https://doi.org/10.1016/S0168-9525(98)01494-2

    Article  CAS  PubMed  Google Scholar 

  63. Larkum AWD, Lockhart PJ, Howe CJ (2007) Shopping for plastids. Trends Plant Sci 12:189–195. https://doi.org/10.1016/j.tplants.2007.03.011

    Article  CAS  PubMed  Google Scholar 

  64. Oborník M, Green BR (2005) Mosaic origin of the heme biosynthesis pathway in photosynthetic eukaryotes. Mol Biol Evol 22:2343–2353. https://doi.org/10.1093/molbev/msi230

    Article  CAS  PubMed  Google Scholar 

  65. Kořený L, Oborník M (2011) Sequence evidence for the presence of two tetrapyrrole pathways in Euglena gracilis. Genom Biol Evol 3:359–364. https://doi.org/10.1093/gbe/evr029

    Article  CAS  Google Scholar 

  66. Martin W, Schnarrenberger C (1997) The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18. https://doi.org/10.1007/s002940050241

    Article  CAS  PubMed  Google Scholar 

  67. Cihlář J, Füssy Z, Horák A, Oborník M (2016) Evolution of the tetrapyrrole biosynthetic pathway in secondary algae: conservation, redundancy and replacement. PLoS One 11:e0166338. https://doi.org/10.1371/journal.pone.0166338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Wolf YI, Koonin EV (2013) Genome reduction as the dominant mode of evolution. BioEssays 35:829–837. https://doi.org/10.1002/bies.201300037

    Article  PubMed  PubMed Central  Google Scholar 

  69. Howe CJ, Barbrook AC, Koumandou VL et al (2003) Evolution of the chloroplast genome. Philos Trans R Soc B 358:99–107. https://doi.org/10.1098/rstb.2002.1176

    Article  CAS  Google Scholar 

  70. Dagan T, Blekhman R, Graur D (2006) The “domino theory” of gene death: gradual and mass gene extinction events in three lineages of obligate symbiotic bacterial pathogens. Mol Biol Evol 23:310–316. https://doi.org/10.1093/molbev/msj036

    Article  CAS  PubMed  Google Scholar 

  71. Zhang Z, Green BR, Cavalier-Smith T (1999) Single gene circles in dinoflagellate chloroplast genomes. Nature 400:155–159. https://doi.org/10.1038/22099

    Article  CAS  PubMed  Google Scholar 

  72. Oborník M (2019) Endosymbiotic evolution of algae, secondary heterotrophy and parasitism. Biomolecules 9:266. https://doi.org/10.3390/biom9070266

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gould SB, Waller RF, McFadden GI (2008) Plastid evolution. Annu Rev Plant Biol 59:491–517. https://doi.org/10.1146/annurev.arplant.59.032607.092915

    Article  CAS  PubMed  Google Scholar 

  74. Waller RF, Gornik SG, Kořený L, Pain A (2016) Metabolic pathway redundancy within the apicomplexan-dinoflagellate radiation argues against an ancient chromalveolate plastid. Commun Integr Biol 9:e1116653. https://doi.org/10.1080/19420889.2015.1116653

    Article  CAS  PubMed  Google Scholar 

  75. Kořený L, Sobotka R, Janouškovec J et al (2011) Tetrapyrrole synthesis of photosynthetic chromerids is likely homologous to the unusual pathway of apicomplexan parasites. Plant Cell 23:3454–3462. https://doi.org/10.1105/tpc.111.089102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Gawryluk RMR, Tikhonenkov DV, Hehenberger E et al (2019) Non-photosynthetic predators are sister to red algae. Nature 572:240–243. https://doi.org/10.1038/s41586-019-1398-6

    Article  CAS  PubMed  Google Scholar 

  77. Richtová J, Sheiner L, Gruber A et al (2021) Using diatom and apicomplexan models to study the heme pathway of Chromera velia. Int J Mol Sci 22:6495. https://doi.org/10.3390/ijms22126495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Nuismer SL, Otto SP (2004) Host-parasite interactions and the evolution of ploidy. Proc Natl Acad Sci U S A 101:11036–11039. https://doi.org/10.1073/pnas.0403151101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Blouin NA, Lane CE (2016) Red algae provide fertile ground for exploring parasite evolution. Persp Phycol 3:11–19. https://doi.org/10.1127/pip/2015/0027

    Article  Google Scholar 

  80. Figueroa-Martinez F, Nedelcu AM, Smith DR, Reyes-Prieto A (2015) When the lights go out: the evolutionary fate of free-living colorless green algae. New Phytol 206:972–982

    Article  PubMed  PubMed Central  Google Scholar 

  81. Krause K (2008) From chloroplasts to “cryptic” plastids: evolution of plastid genomes in parasitic plants. Curr Genet 54:111–121. https://doi.org/10.1007/s00294-008-0208-8

    Article  CAS  PubMed  Google Scholar 

  82. Záhonová K, Füssy Z, Oborník M et al (2016) RuBisCO in non-photosynthetic alga Euglena longa: divergent features, transcriptomic analysis and regulation of complex formation. PLoS One 11:e0158790. https://doi.org/10.1371/journal.pone.0158790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Füssy Z, Záhonová K, Tomčala A et al (2020) The cryptic plastid of Euglena longa defines a new type of non-photosynthetic plastid organelle. mSphere 5:e00675–e00620

    Article  PubMed  PubMed Central  Google Scholar 

  84. Abrahamsen MS, Templeton TJ, Enomoto S et al (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. https://doi.org/10.1126/science.1094786

    Article  CAS  PubMed  Google Scholar 

  85. Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Euk Microbiol 54:66–72. https://doi.org/10.1111/j.1550-7408.2006.00229.x

    Article  CAS  PubMed  Google Scholar 

  86. Gornik SG, Febrimarsa CAM et al (2015) Endosymbiosis undone by stepwise elimination of the plastid in a parasitic dinoflagellate. Proc Natl Acad Sci U S A 112:5767–5772. https://doi.org/10.1073/pnas.1423400112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Lim L, McFadden GI (2010) The evolution, metabolism and functions of the apicoplast. Philos Trans R Soc B 365:749–763. https://doi.org/10.1098/rstb.2009.0273

    Article  CAS  Google Scholar 

  88. Janouškovec J, Tikhonenkov DV, Burki F et al (2015) Factors mediating plastid dependency and the origins of parasitism in apicomplexans and their close relatives. Proc Natl Acad Sci U S A 112:10200–10207. https://doi.org/10.1073/pnas.1423790112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Janouškovec J, Gavelis GS, Burki F et al (2017) Major transitions in dinoflagellate evolution unveiled by phylotranscriptomics. Proc Natl Acad Sci U S A 114:E171–E180. https://doi.org/10.1073/pnas.1614842114

    Article  CAS  PubMed  Google Scholar 

  90. Oborník M (2022) Organellar evolution: a path from benefit to dependence. Microorganisms 10:122

    Article  PubMed  PubMed Central  Google Scholar 

  91. McFadden GI, Reith ME, Munholland J, Lang-Unnasch N (1996) Plastid in human parasites. Nature 381:482–482

    Article  CAS  PubMed  Google Scholar 

  92. Oborník M, Janouškovec J, Chrudimský T, Lukeš J (2009) Evolution of the apicoplast and its hosts: from heterotrophy to autotrophy and back again. Int J Parasitol 39:1–12. https://doi.org/10.1016/j.ijpara.2008.07.010

    Article  CAS  PubMed  Google Scholar 

  93. Mukherjee A, Sadhukhan GC (2016) Anti-malarial drug design by targeting apicoplasts: new perspectives. J Pharmacopunct 19:7–15. https://doi.org/10.3831/KPI.2016.19.001

    Article  Google Scholar 

  94. Kořený L, Sobotka R, Kovářová J et al (2012) Aerobic kinetoplastid flagellate Phytomonas does not require heme for viability. Proc Natl Acad Sci U S A 109:3808–3813. https://doi.org/10.1073/pnas.1201089109

    Article  PubMed  PubMed Central  Google Scholar 

  95. Sanchez-Puerta MV, Lippmeier JC, Apt KE, Delwiche CF (2007) Plastid genes in a non-photosynthetic dinoflagellate. Protist 158:105–117. https://doi.org/10.1016/j.protis.2006.09.004

    Article  CAS  PubMed  Google Scholar 

  96. Slamovits CH, Keeling PJ (2008) Plastid-derived genes in the nonphotosynthetic alveolate Oxyrrhis marina. Mol Biol Evol 25:1297–1306. https://doi.org/10.1093/molbev/msn075

    Article  CAS  PubMed  Google Scholar 

  97. Kayama M, Maciszewski K, Yabuki A et al (2020) Highly reduced plastid genomes of the non-photosynthetic dictyochophyceans Pteridomonas spp. (Ochrophyta, SAR) are retained for tRNA-Glu-based organellar heme biosynthesis. Front Plant Sci 11:602455. https://doi.org/10.3389/fpls.2020.602455

    Article  PubMed  PubMed Central  Google Scholar 

  98. Dorrell RG, Azuma T, Nomura M et al (2019) Principles of plastid reductive evolution illuminated by nonphotosynthetic chrysophytes. Proc Natl Acad Sci U S A 116:6914–6923. https://doi.org/10.1073/pnas.1819976116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kamikawa R, Moog D, Zauner S et al (2017) A non-photosynthetic diatom reveals early steps of reductive evolution in plastids. Mol Biol Evol 34:2355–2366. https://doi.org/10.1093/molbev/msx172

    Article  CAS  PubMed  Google Scholar 

  100. Pradel G, Schlitzer M (2010) Antibiotics in malaria therapy and their effect on the parasite apicoplast. Curr Mol Med 10:335–349. https://doi.org/10.2174/156652410791065273

    Article  CAS  PubMed  Google Scholar 

  101. Kennedy K, Crisafulli EM, Ralph SA (2019) Delayed death by plastid inhibition in apicomplexan parasites. Trends Parasitol 35:747–759. https://doi.org/10.1016/j.pt.2019.07.010

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

ZF is supported by the Simons Collaboration on Principles of Microbial Ecosystems (PriME) (Grant ID: 970820 to Andrew E. Allen). MO is supported by a grant by the Czech Science Foundation, grants number 21-03224S, and the European Regional Development Fund ERDF/ESF, grant number CZ.02.1.01./0.0/0.0/16_019/0000759.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslav Oborník .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Füssy, Z., Oborník, M. (2024). Complex Endosymbioses I: From Primary to Complex Plastids, Serial Endosymbiotic Events. In: Maréchal, E. (eds) Plastids. Methods in Molecular Biology, vol 2776. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3726-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3726-5_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3725-8

  • Online ISBN: 978-1-0716-3726-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics