Skip to main content

Measuring Replicative Lifespan in Cryptococcus neoformans

  • Protocol
  • First Online:
Cryptococcus neoformans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2775))

  • 70 Accesses

Abstract

Advances in understanding cellular aging research have been possible due to the analysis of the replicative lifespan of yeast cells. Studying longevity in the pathogenic yeast Cryptococcus neoformans is essential because old yeast cells with age-related phenotypes accumulate during infection and are associated with increased virulence and antifungal tolerance. Microdissection and microfluidic devices are valuable tools for continuously tracking cells at the single-cell level. In this chapter, we describe the features of these two platforms and outline technical limitations and information to study aging mechanisms while assessing the lifespan of yeast cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Spivey EC, Jones SK Jr, Rybarski JR et al (2017) An aging-independent replicative lifespan in a symmetrically dividing eukaryote. eLife 6:e20340. https://doi.org/10.7554/eLife.20340

    Article  PubMed  PubMed Central  Google Scholar 

  2. Silva VKA, Bhattacharya S, Oliveira NK et al (2022) Replicative aging remodels the cell wall and is associated with increased intracellular trafficking in human pathogenic yeasts. MBio 13(1):e00190–e00122. https://doi.org/10.1128/mbio.00190-22

    Article  CAS  PubMed Central  Google Scholar 

  3. Jain N, Cook E, Xess I et al (2009) Isolation and characterization of senescent Cryptococcus neoformans and implications for phenotypic switching and pathogenesis in chronic cryptococcosis. Eukaryot Cell 8(6):858–866. https://doi.org/10.1128/EC.00017-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Coody TK, Hughes AL (2018) Advancing the aging biology toolkit. eLife 7:e42976. https://doi.org/10.7554/eLife.42976

    Article  PubMed  PubMed Central  Google Scholar 

  5. Bouklas T, Alonso-Crisóstomo L, Székely T Jr et al (2017) Generational distribution of a Candida glabrata population: resilient old cells prevail, while younger cells dominate in the vulnerable host. PLoS Pathog 13(5):e1006355–e1006355. https://doi.org/10.1371/journal.ppat.1006355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Orner EP, Zhang P, Jo MC et al (2019) High-throughput yeast aging analysis for Cryptococcus (HYAAC) microfluidic device streamlines aging studies in Cryptococcus neoformans. Commun Biol 2(1):256. https://doi.org/10.1038/s42003-019-0504-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Park PU, McVey M, Guarente L (2002) Separation of mother and daughter cells. In: Methods in enzymology, vol 351. Academic Press, pp 468–477. https://doi.org/10.1016/S0076-6879(02)51865-6

    Chapter  Google Scholar 

  8. Lee SS, Vizcarra IA, Huberts DHEW et al (2012) Whole lifespan microscopic observation of budding yeast aging through a microfluidic dissection platform. Proc Natl Acad Sci 109(13):4916–4920. https://doi.org/10.1073/pnas.1113505109

    Article  PubMed  PubMed Central  Google Scholar 

  9. Huberts DHEW, González J, Lee SS et al (2014) Calorie restriction does not elicit a robust extension of replicative lifespan in Saccharomyces cerevisiae. Proc Natl Acad Sci 111(32):11727–11731. https://doi.org/10.1073/pnas.1410024111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jo MC, Liu W, Gu L et al (2015) High-throughput analysis of yeast replicative aging using a microfluidic system. Proc Natl Acad Sci 112(30):9364–9369. https://doi.org/10.1073/pnas.1510328112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crane MM, Clark IBN, Bakker E et al (2014) A microfluidic system for studying ageing and dynamic single-cell responses in budding yeast. PLoS One 9(6):e100042. https://doi.org/10.1371/journal.pone.0100042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health (NIH 1R01- AI127704-01A1) and the Veterans Administration (VA) Merit (I01BX003741-01A2) to BCF. The contents of this article do not represent the views of the VA or the United States government.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bettina C. Fries .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silva, V.K.A., Oliveira, N.K., Fries, B.C. (2024). Measuring Replicative Lifespan in Cryptococcus neoformans. In: McClelland, E.E. (eds) Cryptococcus neoformans. Methods in Molecular Biology, vol 2775. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3722-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3722-7_25

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3721-0

  • Online ISBN: 978-1-0716-3722-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics