Skip to main content

Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line

  • Protocol
  • First Online:
Cryptococcus neoformans

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2775))

  • 56 Accesses

Abstract

Monocyte/macrophage cells play a central role in innate immunity against C. neoformans and C. gattii, species known to cause human disease. Cryptococcus is the only fungal genus known to possess such a large extracellular polysaccharide capsule, which impacts interactions of innate cells with the yeast. This interaction results in different fates, such as phagocytosis and intracellular proliferation and, as the interaction progresses, vomocytosis, cell-to-cell transfer, lysis of macrophages, or yeast killing. Differentiating internalized versus external Cryptococcus cells is thus essential to evaluate monocyte–macrophage phagocytosis. We describe here a protocol that allows quantification of Cryptococcus spp. phagocytosis using quantitative flow cytometry in human monocytes and a murine macrophage cell line (J774).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bliska JB, Casadevall A (2009) Intracellular pathogenic bacteria and fungi – a case of convergent evolution? Nat Rev Microbiol 7(2):165–171

    Article  CAS  PubMed  Google Scholar 

  2. Bitar D, Lortholary O, Le Strat Y et al (2014) Population-based analysis of invasive fungal infections, France, 2001–2010. Emerg Infect Dis 20(7):1149–1155

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rajasingham R, Smith RM, Park BJ et al (2017) Global burden of disease of HIV-associated cryptococcal meningitis: an updated analysis. Lancet Infect Dis 17(8):873–881

    Article  PubMed  PubMed Central  Google Scholar 

  4. Feldmesser M, Kress Y, Novikoff P et al (2000) Cryptococcus neoformans is a facultative intracellular pathogen in murine pulmonary infection. Infect Immun 68(7):4225–4237

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kronstad JW, Attarian R, Cadieux B et al (2011) Expanding fungal pathogenesis: Cryptococcus breaks out of the opportunistic box. Nat Rev Microbiol 9(3):193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Charlier C, Nielsen K, Daou S et al (2009) Evidence of a role for monocytes in dissemination and brain invasion by Cryptococcus neoformans. Infect Immun 77(1):120–127

    Article  CAS  PubMed  Google Scholar 

  7. García-Rodas R, Zaragoza O (2012) Catch me if you can: Phagocytosis and killing avoidance by Cryptococcus neoformans. FEMS Immunol Med Microbiol 64(2):147–161

    Article  PubMed  Google Scholar 

  8. Jesus MD, Nicola AM, Chow S-K et al (2010) Glucuronoxylomannan, galactoxylomannan, and mannoprotein occupy spatially separate and discrete regions in the capsule of Cryptococcus neoformans. Virulence 1(6):500–508

    Article  PubMed  PubMed Central  Google Scholar 

  9. Levitz SM, DiBenedetto DJ (1989) Paradoxical role of capsule in murine bronchoalveolar macrophage-mediated killing of Cryptococcus neoformans. J Immunol 142(2):659–665

    Article  CAS  PubMed  Google Scholar 

  10. McQuiston T, Luberto C, Del Poeta M (2011) Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages. Microbiol Read 157(Pt 5):1416–1427

    Article  CAS  Google Scholar 

  11. Ben-Abdallah M, Sturny-Leclère A, Avé P et al (2012) Fungal-induced cell cycle impairment, chromosome instability and apoptosis via differential activation of NF-κB. PLoS Pathog 8(3):e1002555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kozel TR, Wilson MA, Pfrommer GS et al (1989) Activation and binding of opsonic fragments of C3 on encapsulated Cryptococcus neoformans by using an alternative complement pathway reconstituted from six isolated proteins. Infect Immun 57(7):1922–1927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kozel TR, Pfrommer GS (1986) Activation of the complement system by Cryptococcus neoformans leads to binding of iC3b to the yeast. Infect Immun 52(1):1–5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Keller RG, Pfrommer GS, Kozel TR (1994) Occurrences, specificities, and functions of ubiquitous antibodies in human serum that are reactive with the Cryptococcus neoformans cell wall. Infect Immun 62(1):215–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zaragoza O, Taborda CP, Casadevall A (2003) The efficacy of complement-mediated phagocytosis of Cryptococcus neoformans is dependent on the location of C3 in the polysaccharide capsule and involves both direct and indirect C3-mediated interactions. Eur J Immunol 33(7):1957–1967

    Article  CAS  PubMed  Google Scholar 

  16. Casadevall A, Cleare W, Feldmesser M et al (1998) Characterization of a murine monoclonal antibody to Cryptococcus neoformans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 42(6):1437–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Dromer F, Salamero J, Contrepois A et al (1987) Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neoformans capsular polysaccharide. Infect Immun 55(3):742–748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Carreto-Binaghi LE, Aliouat EM, Taylor ML (2016) Surfactant proteins, SP-A and SP-D, in respiratory fungal infections: their role in the inflammatory response. Respir Res 17(1):66

    Article  PubMed  PubMed Central  Google Scholar 

  19. Casadevall A, Coelho C, Alanio A (2018) Mechanisms of Cryptococcus neoformans-mediated host damage. Front Immunol 9:855

    Article  PubMed  PubMed Central  Google Scholar 

  20. Taborda CP, Casadevall A (2002) CR3 (CD11b/CD18) and CR4 (CD11c/CD18) are involved in complement-independent antibody-mediated phagocytosis of Cryptococcus neoformans. Immunity 16(6):791–802

    Article  CAS  PubMed  Google Scholar 

  21. Coelho C, Souza ACO, Derengowski L d S et al (2015) Macrophage mitochondrial and stress response to ingestion of Cryptococcus neoformans. J Immunol 194(5):2345–2357

    Article  CAS  PubMed  Google Scholar 

  22. Ikeda-Dantsuji Y, Ohno H, Tanabe K et al (2015) Interferon-γ promotes phagocytosis of Cryptococcus neoformans but not Cryptococcus gattii by murine macrophages. J Infect Chemother 21(12):831–836

    Article  CAS  PubMed  Google Scholar 

  23. Alanio A, Desnos-Ollivier M, Dromer F (2011) Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans. mBio 2(4):e00158–e00111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Levitz SM, Farrell TP (1990) Growth inhibition of Cryptococcus neoformans by cultured human monocytes: role of the capsule, opsonins, the culture surface, and cytokines. Infect Immun 58(5):1201–1209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Walenkamp AM, Scharringa J, Schramel FM et al (2000) Quantitative analysis of phagocytosis of Cryptococcus neoformans by adherent phagocytic cells by fluorescence multi-well plate reader. J Microbiol Methods 40(1):39–45

    Article  CAS  PubMed  Google Scholar 

  26. Alvarez M, Burn T, Luo Y et al (2009) The outcome of Cryptococcus neoformans intracellular pathogenesis in human monocytes. BMC Microbiol 9:51

    Article  PubMed  PubMed Central  Google Scholar 

  27. Coelho C, Tesfa L, Zhang J et al (2012) Analysis of cell cycle and replication of mouse macrophages after in vivo and in vitro Cryptococcus neoformans infection using laser scanning cytometry. Infect Immun 80(4):1467–1478

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Srikanta D, Yang M, Williams M et al (2011) A sensitive high-throughput assay for evaluating host-pathogen interactions in Cryptococcus neoformans infection. PLoS One 6(7):e22773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mukherjee S, Feldmesser M, Casadevall A (1996) J774 murine macrophage-like cell interactions with Cryptococcus neoformans in the presence and absence of opsonins. J Infect Dis 173(5):1222–1231

    Article  CAS  PubMed  Google Scholar 

  30. Alanio A, Vernel-Pauillac F, Sturny-Leclère A et al (2015) Cryptococcus neoformans host adaptation: Toward biological evidence of dormancy. mBio 6(2):e02580–e02514

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors thank Marion Benazra for her helpful support and Professor Arturo Casadevall for providing the 18B7 mAb.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandre Alanio .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lafont, E., Sturny-Leclère, A., Coelho, C., Lanternier, F., Alanio, A. (2024). Assessing Phagocytosis of Cryptococcus neoformans Cells in Human Monocytes or the J774 Murine Macrophage Cell Line. In: McClelland, E.E. (eds) Cryptococcus neoformans. Methods in Molecular Biology, vol 2775. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3722-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3722-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3721-0

  • Online ISBN: 978-1-0716-3722-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics