Skip to main content

Purification of Circular RNAs Using Poly(A) Tailing Followed by RNase R Digestion

  • Protocol
  • First Online:
Circular RNAs

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2765))

Abstract

Thousands of eukaryotic protein-coding genes can be alternatively spliced to yield linear mRNAs and circular RNAs (circRNAs). Some circRNAs accumulate to higher levels than their cognate linear mRNAs, but the vast majority are expressed at low levels. Hence, for most circRNAs, only a handful of sequencing reads, if any, that span the backsplicing junction are observed in standard RNA-seq libraries. It thus has become common to use the 3′–5′ exonuclease ribonuclease R (RNase R) to selectively degrade linear RNAs when aiming to prove transcript circularity or biochemically enrich circRNAs. However, RNase R fails to degrade linear RNAs with structured 3′ ends or internal G-quadruplex structures. To overcome these shortcomings, we describe an improved protocol for circRNA purification from total RNA that employs a poly(A) tailing step prior to RNase R digestion, which is performed in a Li+ containing buffer (rather than K+) to destabilize G-quadruplexes. This biochemical method enables higher enrichment (two- to threefold) of circRNAs to be obtained compared to standard RNase R protocols due to more efficient removal of linear RNAs. By then performing quantitative RT-PCR (RT-qPCR) or generating RNA-seq libraries, the expression of individual circRNAs can be examined or the entire set of expressed circRNAs defined using established annotation algorithms. We describe step-by-step methods for annotating circRNAs using the CIRI2 and CIRCexplorer2 algorithms. In total, this overall approach can be used to enrich for circRNAs from any total RNA sample, thereby enabling one to quickly identify and validate circRNAs of interest for functional studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nilsen TW, Graveley BR (2010) Expansion of the eukaryotic proteome by alternative splicing. Nature 463(7280):457–463. https://doi.org/10.1038/nature08909

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Wahl MC, Will CL, Luhrmann R (2009) The spliceosome: design principles of a dynamic RNP machine. Cell 136(4):701–718. https://doi.org/10.1016/j.cell.2009.02.009

    Article  CAS  PubMed  Google Scholar 

  3. Wilusz JE (2018) A 360 degrees view of circular RNAs: from biogenesis to functions. Wiley Interdiscip Rev RNA:e1478. https://doi.org/10.1002/wrna.1478

  4. Yang L, Wilusz JE, Chen LL (2022) Biogenesis and regulatory roles of circular RNAs. Annu Rev Cell Dev Biol 38:263–289. https://doi.org/10.1146/annurev-cellbio-120420-125117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB, Kjems J (2019) The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet 20(11):675–691. https://doi.org/10.1038/s41576-019-0158-7

    Article  CAS  PubMed  Google Scholar 

  6. Patop IL, Wust S, Kadener S (2019) Past, present, and future of circRNAs. EMBO J 38(16):e100836. https://doi.org/10.15252/embj.2018100836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhang Y, Xue W, Li X, Zhang J, Chen S, Zhang JL, Yang L, Chen LL (2016) The biogenesis of nascent circular RNAs. Cell Rep 15(3):611–624. https://doi.org/10.1016/j.celrep.2016.03.058

    Article  CAS  PubMed  Google Scholar 

  8. Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF, Sharpless NE (2013) Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA 19(2):141–157. https://doi.org/10.1261/rna.035667.112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salzman J, Gawad C, Wang PL, Lacayo N, Brown PO (2012) Circular RNAs are the predominant transcript isoform from hundreds of human genes in diverse cell types. PLoS One 7(2):e30733. https://doi.org/10.1371/journal.pone.0030733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, le Noble F, Rajewsky N (2013) Circular RNAs are a large class of animal RNAs with regulatory potency. Nature 495(7441):333–338. https://doi.org/10.1038/nature11928

    Article  CAS  PubMed  Google Scholar 

  11. You X, Vlatkovic I, Babic A, Will T, Epstein I, Tushev G, Akbalik G, Wang M, Glock C, Quedenau C, Wang X, Hou J, Liu H, Sun W, Sambandan S, Chen T, Schuman EM, Chen W (2015) Neural circular RNAs are derived from synaptic genes and regulated by development and plasticity. Nat Neurosci 18(4):603–610. https://doi.org/10.1038/nn.3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Szabo L, Salzman J (2016) Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev Genet 17(11):679–692. https://doi.org/10.1038/nrg.2016.114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Dodbele S, Mutlu N, Wilusz JE (2021) Best practices to ensure robust investigation of circular RNAs: pitfalls and tips. EMBO Rep 22(3):e52072. https://doi.org/10.15252/embr.202052072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Gao Y, Wang J, Zhao F (2015) CIRI: an efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol 16(1):4. https://doi.org/10.1186/s13059-014-0571-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Zhang XO, Dong R, Zhang Y, Zhang JL, Luo Z, Zhang J, Chen LL, Yang L (2016) Diverse alternative back-splicing and alternative splicing landscape of circular RNAs. Genome Res 26(9):1277–1287. https://doi.org/10.1101/gr.202895.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Xiao MS, Wilusz JE (2019) An improved method for circular RNA purification using RNase R that efficiently removes linear RNAs containing G-quadruplexes or structured 3′ ends. Nucleic Acids Res 47(16):8755–8769. https://doi.org/10.1093/nar/gkz576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Panda AC, De S, Grammatikakis I, Munk R, Yang X, Piao Y, Dudekula DB, Abdelmohsen K, Gorospe M (2017) High-purity circular RNA isolation method (RPAD) reveals vast collection of intronic circRNAs. Nucleic Acids Res 45(12):e116. https://doi.org/10.1093/nar/gkx297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cheng ZF, Deutscher MP (2005) An important role for RNase R in mRNA decay. Mol Cell 17(2):313–318. https://doi.org/10.1016/j.molcel.2004.11.048

    Article  CAS  PubMed  Google Scholar 

  19. Vincent HA, Deutscher MP (2006) Substrate recognition and catalysis by the exoribonuclease RNase R. J Biol Chem 281(40):29769–29775. https://doi.org/10.1074/jbc.M606744200

    Article  CAS  PubMed  Google Scholar 

  20. Hossain ST, Malhotra A, Deutscher MP (2016) How RNase R degrades structured RNA: ROLE OF THE HELICASE ACTIVITY AND THE S1 DOMAIN. J Biol Chem 291(15):7877–7887. https://doi.org/10.1074/jbc.M116.717991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Varshney D, Spiegel J, Zyner K, Tannahill D, Balasubramanian S (2020) The regulation and functions of DNA and RNA G-quadruplexes. Nat Rev Mol Cell Biol 21(8):459–474. https://doi.org/10.1038/s41580-020-0236-x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Aranda PS, LaJoie DM, Jorcyk CL (2012) Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 33(2):366–369. https://doi.org/10.1002/elps.201100335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen S, Zhou Y, Chen Y, Gu J (2018) fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics 34(17):i884–i890. https://doi.org/10.1093/bioinformatics/bty560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R35-GM119735. J.E.W. is a CPRIT Scholar in Cancer Research (RR210031). J.E.W. serves as a consultant for Laronde.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy E. Wilusz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Xiao, MS., Wilusz, J.E. (2024). Purification of Circular RNAs Using Poly(A) Tailing Followed by RNase R Digestion. In: Dieterich, C., Baudet, ML. (eds) Circular RNAs. Methods in Molecular Biology, vol 2765. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3678-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3678-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3677-0

  • Online ISBN: 978-1-0716-3678-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics