Skip to main content

Quantification of Neuronal Dendritic Spine Density and Lengths of Apical and Basal Dendrites in Temporal Lobe Structures Using Golgi-Cox Staining

  • Protocol
  • First Online:
Neuroprotection

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2761))

  • 530 Accesses

Abstract

The objective of this chapter is to provide an overview of the methods used to investigate the connectivity and structure of the nervous system. These methods allow neuronal cells to be categorized according to their location, shape, and connections to other cells. The Golgi-Cox staining gives a thorough picture of all significant neuronal structures found in the brain that may be distinguished from one another. The most significant characteristic is its three-dimensional integrity since all neuronal structures may be followed continuously from one part to the next. Successions of sections of the brain’s neurons are seen with the Golgi stain. The Golgi method is used to serially segment chosen brain parts, and the resulting neurons are produced from those sections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Golgi C (1873) Sulla struttura della sostanza grigia del cervello. Gazz Med Ital Lombardia 6:244–246

    Google Scholar 

  2. Koyama Y (2013) The unending fascination with the Golgi method. OA Anat 1:24

    Google Scholar 

  3. Buell SJ (1982) Golgi-Cox and rapid golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–5007

    Article  CAS  PubMed  Google Scholar 

  4. Angulo A, Fernández E, Merchán JA, Molina M (1996) A reliable method for Golgi staining of retina and brain slices. J Neurosci Methods 66:55–59

    Article  CAS  PubMed  Google Scholar 

  5. Koyama Y, Tohyama M (2012) A modified and highly sensitive Golgi-Cox method to enable complete and stable impregnation of embryonic neurons. J Neurosci Methods 209:58–61

    Article  PubMed  Google Scholar 

  6. Gibb R, Kolb B (1998) A method for vibratome sectioning of Golgi-Cox-stained whole rat brain. J Neurosci Methods 79:1–4. https://doi.org/10.1016/s0165-0270(97)00163-5

    Article  CAS  PubMed  Google Scholar 

  7. Ranjan A, Mallick BN (2010) A modified method for consistent and reliable Golgi-cox staining in significantly reduced time. Front Neurol 1:157. https://doi.org/10.3389/fneur.2010.00157

    Article  PubMed  PubMed Central  Google Scholar 

  8. Levine ND, Rademacher DJ, Collier TJ, O’Malley JA, Kells AP, San Sebastian W (2013) Advances in thin tissue Golgi-Cox impregnation: fast, reliable methods for multi-assay analyses in rodent and non-human primate brain. J Neurosci Methods 213:214–227

    Article  PubMed  PubMed Central  Google Scholar 

  9. Gull S, Ingrisch I, Tausch S, Witte OW, Schmidt S (2015) Consistent and reproducible staining of glia by a modified Golgi-Cox method. J Neurosci Methods 256:141–150

    Article  CAS  PubMed  Google Scholar 

  10. Zaqout S, Kaindl AM (2016) Golgi-Cox staining step by step. Front Neuroanat 10:38

    Article  PubMed  PubMed Central  Google Scholar 

  11. Garcia-Lopez P, Garcia-Marin V, Freire M (2007) The discovery of dendritic spines by Cajal in 1888 and its relevance in present neuroscience. Prog Neurobiol 83:110–130

    Article  CAS  PubMed  Google Scholar 

  12. Rutledge LT, Duncan J, Beatty N (1969) A study of pyramidal cell axon collaterals in intact and partially isolated adult cerebral cortex. Brain Res 16:15–22

    Article  CAS  PubMed  Google Scholar 

  13. Dubey V, Dey S, Dixit AB, Tripathi M, Chandra PS, Banerjee J (2022) Differential glutamate receptor expression and function in the hippocampus, anterior temporal lobe, and neocortex in a pilocarpine model of temporal lobe epilepsy. Exp Neurol 347:113916

    Article  CAS  PubMed  Google Scholar 

  14. Mehder RH, Bennett BM, Andrew RD (2020) Morphometric analysis of hippocampal and neocortical pyramidal neurons in a mouse model of late-onset Alzheimer’s disease. J Alzheimers Dis 74(4):1069–1083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Ledergerber D, Larkum ME (2010) Properties of layer 6 pyramidal neuron apical dendrites. J Neurosci 30(39):13031–13044

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Milatovic D, Montine TJ, Zaja-Milatovic S, Madison JL, Bowman AB, Aschner M (2010) Morphometric analysis in neurodegenerative disorders. Curr Protoc Toxicol Chapter 12:1–12.16

    Google Scholar 

  17. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Krstonošić B, Milošević NT, Gudović R (2023) Quantitative analysis of the Golgi impregnated human (neo)striatal neurons: observation of the morphological characteristics followed by an emphasis on the functional diversity of cells. Ann Anat 246:152040

    Article  PubMed  Google Scholar 

  19. Harris KM, Jensen FE, Tsao B (1992) Three-dimensional structure of dendritic spines and synapses in rat hippocampus (CA1) at postnatal day 15 and adult ages: implications for the maturation of synaptic physiology and long-term potentiation. J Neurosci Off J Soc Neurosci 12(7):2685–2705

    Article  CAS  Google Scholar 

  20. Schaefer ML, Perez PJ, Wang M, Gray C, Krall C, Sun X, Hunter E, Skinner J, Johns RA (2020) Neonatal isoflurane anesthesia or disruption of postsynaptic density-95 protein interactions change dendritic spine densities and cognitive function in juvenile mice. Anesthesiology 133(4):812–823

    Article  CAS  PubMed  Google Scholar 

  21. Perez-Cruz C, Nolte MW, Van Gaalen MM, Rustay NR, Termont A, Tanghe A, Kirchhoff F, Ebert U (2011) Reduced spine density in specific regions of CA1 pyramidal neurons in two transgenic mouse models of Alzheimer’s disease. J Neurosci 31:3926–3934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Risher WC, Ustunkaya T, Alvarado JS, Eroglu C (2014) Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PLoS One 9:e107591

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work is funded by the Department of Biotechnology, Ministry of Science and Technology, Govt. of India [BT/PR20392/MED/122/26/2016], and Indian Council for Medical Research (Grant No. BMI/11(58)/2022).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jyotirmoy Banerjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dubey, V., Dixit, A.B., Tripathi, M., Sarat Chandra, P., Banerjee, J. (2024). Quantification of Neuronal Dendritic Spine Density and Lengths of Apical and Basal Dendrites in Temporal Lobe Structures Using Golgi-Cox Staining. In: Ray, S.K. (eds) Neuroprotection. Methods in Molecular Biology, vol 2761. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3662-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3662-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3661-9

  • Online ISBN: 978-1-0716-3662-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics