Skip to main content

Brief History of Placozoa

  • Protocol
  • First Online:
Ctenophores

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2757))

  • 205 Accesses

Abstract

Placozoans are morphologically the simplest free-living animals. They represent a unique window of opportunities to understand both the origin of the animal organization and the rules of life for the system and synthetic biology of the future. However, despite more than 100 years of their investigations, we know little about their organization, natural habitats, and life strategies. Here, we introduce this unique animal phylum and highlight some directions vital to broadening the frontiers of the biomedical sciences. In particular, understanding the genomic bases of placozoan biodiversity, cell identity, connectivity, reproduction, and cellular bases of behavior are critical hot spots for future studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Grell KG, Ruthmann A (1991) Placozoa. In: Harrison FW (ed) Microscopic anatomy of invertebrates. Wiley-Liss, New York, pp 13–27

    Google Scholar 

  2. Srivastava M et al (2008) The Trichoplax genome and the nature of placozoans. Nature 454(7207):955–960

    Google Scholar 

  3. Schierwater B, DeSalle R (2018) Placozoa. Curr Biol 28(3):R97–R98

    Article  CAS  PubMed  Google Scholar 

  4. Schierwater B et al (2021) The enigmatic Placozoa Part 2: exploring evolutionary controversies and promising questions on earth and in space. BioEssays 43(10):e2100083

    Article  PubMed  Google Scholar 

  5. Schierwater B et al (2021) The enigmatic Placozoa Part 1: exploring evolutionary controversies and poor ecological knowledge. BioEssays 43(10):e2100080

    Article  PubMed  Google Scholar 

  6. Syed T, Schierwater B (2002) Trichoplax adhaerens: discovered as a missing link, forgotten as a hydrozoan, re-discovered as a key to metazoan evolution. Vie Milieu 52:177–187

    Google Scholar 

  7. Schierwater B et al (2010) Trichoplax and Placozoa: one of the crucial keys to understanding metazoan evolution. In: Key transitions in animal evolution. CRC Press, Boca Raton, pp 289–326

    Google Scholar 

  8. Nielsen C (2019) Early animal evolution: a morphologist’s view. R Soc Open Sci 6(7):190638

    Google Scholar 

  9. Grell K (1981) Trichoplax adhaerens and the origin of Metazoa. In: Lincei ADC (ed) Origine dei Grandi Phyla dei Metazoi. Accademia Nazionale dei Lincei, Convegno Intern, pp 101–127

    Google Scholar 

  10. Schulze FE (1883) Trichoplax adhaerens, nov. gen., nov. spec. Zool Anz 6:92–97

    Google Scholar 

  11. Schulze FE (1891) Uber Trichoplax adhaerens. Phys Abh Kgl Acad Wiss Berl:1–23

    Google Scholar 

  12. Rassat J, Ruthmann A (1979) Trichoplax adhaerens F.E. Schulze (Placozoa) in the scanning electron microscope. Zoomorphologie 72:59–72

    Google Scholar 

  13. Graff L (1891) Die Organisation der Turbellaria acoela. W. Engelmann, Leipzig

    Book  Google Scholar 

  14. Metschnikoff E (1886) Embryologische Studien an Medusen. Ein Beitrag zur Genealogie der Primitiv-Organe. A. Holder, Wien

    Book  Google Scholar 

  15. Noll F (1890) Über das Leben niederer Seetiere, pp 85–87

    Google Scholar 

  16. Stiasny G (1903) Einige histologische details über Trichoplax adhaerens. Zeitschr wiss Zool 75:430–436

    Google Scholar 

  17. Gabrowski T (1903) Morphogenetische Studien als Beitrag zur Methodologie zoologischer Forshung. Jena

    Google Scholar 

  18. Krumbach T (1907) Trichoplax, die umgewandelte Planula einer Hydramedusae. Zool Anz Suppl 31:450–454

    Google Scholar 

  19. Hyman LH (1940) Invertebrates: Protozoa through Ctenophora, vol 1. McGraw-Hill, New York/London, p 726

    Google Scholar 

  20. Monticelli FS (1893) Treptoplax reptans n.g., n.sp. Atti dell’Academia dei Lincei, Rendiconti 5(II):39–40

    Google Scholar 

  21. Monticelli FS (1896) Adelotacta zoologica. 2. Treptoplax reptans Montic. Mitt Zool Stat Neapel 12:444–462

    Google Scholar 

  22. Kuhl W, Kuhl G (1966) Untersuchungen uber das bewegungsverhalten von Trichoplax adhaerens F. E. Schulze (Zeittransformation: Zeitraffung), vol 56. Z. Morph. U. Okol Tiere, pp 417–435

    Google Scholar 

  23. Kuhl W, Kuhl G (1963) Bewegungsphysiologische Untersuchungen an Trichoplax Adhaerens F.E.Schulze. Zool Anz Suppl 26:460–469

    Google Scholar 

  24. Grell KG (1971) Trichoplax adhaerens F.E. Schulze und die Entstehung der Metazoen. Naturwiss Rundschau 24:160–161

    Google Scholar 

  25. Grell K (1972) Eibildung und Furchung von Trichoplax adhaerens FE Schulze (Placozoa). Zoomorphology 73:297–314

    Google Scholar 

  26. Grell KG, Benwitz G (1971) Die Ultrastruktur von Trichoplax adhaerens F. E. Schulze. Cytobiologie 4:216–240

    Google Scholar 

  27. Grell KG, Benwitz G (1981) Additional investigations on the ultrastructure of Trichoplax adhaerens F.E. Schulze (Placozoa). Zoomorphology 98(1):47–67

    Google Scholar 

  28. Butschli O (1884) Bemerkungen zur Gastraeatheorie. Morphol Jb 8:415–427

    Google Scholar 

  29. Ender A, Schierwater B (2003) Placozoa are not derived cnidarians: evidence from molecular morphology. Mol Biol Evol 20(1):130–134

    Article  CAS  PubMed  Google Scholar 

  30. Malakhov VV (1990) Enigmatic groups of marine invertebrates: Trichoplax, Orthonectida, Dicyemida, Porifera. Moscow State University Press, Moscow, p 144. (in Russian)

    Google Scholar 

  31. Ivanov AV (1973) Trichoplax adhaerens, a Phagocitella-like animal. Zoologiceskij Zurnal (Zool J) 52:1117–1130. (in Russian)

    Google Scholar 

  32. Malakhov VV, Nezlin LP (1983) Trichoplax – a living model of the origin of multicellular organisms. Nauka 3:32–41. (in Russian)

    Google Scholar 

  33. Ivanov DL, Malakhov VV, Tsetlin AB (1980) Fine morphology and ultrastructure of the primitive multicellular organism Trichoplax sp. 1. Morphology of adults and vagrants according to the data of scanning electron microscopy. Zool Zhurnal 59(12):1765. (in Russian)

    Google Scholar 

  34. Ivanov DL, Malakhov VV, Tsetlin AB (1980) New find of a primitive multicellular organism Trichoplax sp. Zool Zhurnal 59:1735–1739. (in Russian)

    Google Scholar 

  35. Ivanov DL et al (1982) Fine morphology and ultrastructure of the primitive multicellular organism Trichoplax sp. 2. Ultrastructure of adults. Zool Zhurnal 61:645–652. (in Russian)

    Google Scholar 

  36. Okshtein IL (1987) On the biology of Trichoplax sp. (Placozoa). Zool Zhurnal 66(3):339

    Google Scholar 

  37. Ivanov AV (1968) The origin of the multicellular animals: phylogenetic essays. Nauka, Leningrad, p 288. (in Russian)

    Google Scholar 

  38. Metchnikoff EI (2013) In: Tauber AI, Williamson D, Gourko H (eds) The evolutionary biology papers of Elie Metchnikoff. Springer, Cham

    Google Scholar 

  39. Haeckel E (1874) Die Gastrea-Theorie, die phylogenetische Classification des Thierreichs und die Homologie der Keimblatter. Jena Z Naturw 8:1–55

    Google Scholar 

  40. Nielsen C (2012) Animal evolution: interrelationships of the living phyla. Oxford University Press, Oxford

    Google Scholar 

  41. Metschnikoff E (1892) La Phagocytose Musculaire Ann de L’institut Pasteur 6:1–12

    Google Scholar 

  42. Buchholz K, Ruthmann A (1995) The mesenchyme-like layer of the fiber cells of Trichoplax adhaerens (Placozoa), a syncytium. Z Naturforsch C Biosci 50c:282–285

    Google Scholar 

  43. Hadfield MG, McFall-Ngai MJ (2021) Trichoplax and its bacteria How many are there? Are they speaking? In: Bosch TCG, Hadfield MG (eds) Cellular dialogues in the Holobiont. CRC Press, Boca Raton, pp 35–48

    Google Scholar 

  44. Mayorova TD et al (2019) The ventral epithelium of Trichoplax adhaerens deploys in distinct patterns cells that secrete digestive enzymes, mucus or diverse neuropeptides. Biol Open 8(8)

    Google Scholar 

  45. Romanova DY (2019) Cell types diversity of H4 haplotype Placozoa sp. Mar Biol J 4(1):81–90

    Google Scholar 

  46. Romanova DY et al (2021) Hidden cell diversity in Placozoa: ultrastructural insights from Hoilungia hongkongensis. Cell Tissue Res 385(3):623–637

    Google Scholar 

  47. Ruthmann A, Behrendt G, Wahl R (1986) The ventral epithelium of Trichoplax adhaerens (Placozoa): cytoskeletal structures, cell contacts and endocytosis. Zoomorphology 106:115–122

    Google Scholar 

  48. Driscoll T et al (2013) Bacterial DNA sifted from the Trichoplax adhaerens (Animalia: Placozoa) genome project reveals a putative rickettsial endosymbiont. Genome Biol Evol 5(4):621–645

    Google Scholar 

  49. Gruber-Vodicka HR et al (2019) Two intracellular and cell type-specific bacterial symbionts in the placozoan Trichoplax H2. Nat Microbiol 4(9):1465–1474

    Google Scholar 

  50. Kamm K et al (2019) Genome analyses of a placozoan rickettsial endosymbiont show a combination of mutualistic and parasitic traits. Sci Rep 9(1):17561

    Article  PubMed  PubMed Central  Google Scholar 

  51. Sperling EA, Vinther J (2010) A placozoan affinity for Dickinsonia and the evolution of late Proterozoic metazoan feeding modes. Evol Dev 12(2):201–209

    Google Scholar 

  52. Hoekzema RS et al (2017) Quantitative study of developmental biology confirms Dickinsonia as a metazoan. Proc Biol Sci 284(1862):20171348

    Google Scholar 

  53. Romanova DY et al (2022) Expanding of life strategies in Placozoa: insights from long-term culturing of Trichoplax and Hoilungia. Front Cell Dev Biol 10:10

    Google Scholar 

  54. Laumer CE et al (2018) Support for a clade of Placozoa and Cnidaria in genes with minimal compositional bias. elife 7:7

    Article  Google Scholar 

  55. Moroz LL et al (2014) The ctenophore genome and the evolutionary origins of neural systems. Nature 510(7503):109–114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Whelan NV et al (2017) Ctenophore relationships and their placement as the sister group to all other animals. Nat Ecol Evol 1(11):1737–1746

    Google Scholar 

  57. Laumer CE et al (1906) Revisiting metazoan phylogeny with genomic sampling of all phyla. Proc Biol Sci 2019(286):20190831

    Google Scholar 

  58. Telford MJ, Moroz LL, Halanych KM (2016) Evolution: a sisterly dispute. Nature 529(7586):286–287

    Article  CAS  PubMed  Google Scholar 

  59. Sebe-Pedros A et al (2018) Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat Ecol Evol 2(7):1176–1188

    Article  PubMed  PubMed Central  Google Scholar 

  60. Moroz LL (2018) NeuroSystematics and periodic system of neurons: model vs reference species at single-cell resolution. ACS Chem Neurosci 9(8):1884–1903

    Article  CAS  PubMed  Google Scholar 

  61. Moroz LL, Romanova DY, Kohn AB (2021) Neural versus alternative integrative systems: molecular insights into origins of neurotransmitters. Philos Trans R Soc B B 20190762:1–21

    Google Scholar 

  62. Scientists, G.C.O et al (2014) The Global Invertebrate Genomics Alliance (GIGA): developing community resources to study diverse invertebrate genomes. J Hered 105(1):1–18

    Article  Google Scholar 

  63. Schierwater B et al (2009) The diploblast-bilateria sister hypothesis: parallel revolution of a nervous systems may have been a simple step. Commun Integr Biol 2(5):403–405

    Article  PubMed  PubMed Central  Google Scholar 

  64. Schierwater B, de Jong D, Desalle R (2009) Placozoa and the evolution of Metazoa and intrasomatic cell differentiation. Int J Biochem Cell Biol 41(2):370–379

    Article  CAS  PubMed  Google Scholar 

  65. Schierwater B (2005) My favorite animal, Trichoplax adhaerens. BioEssays 27(12):1294–1302

    Google Scholar 

  66. Brooke NM, Holland PW (2003) The evolution of multicellularity and early animal genomes. Curr Opin Genet Dev 13(6):599–603

    Article  CAS  PubMed  Google Scholar 

  67. Collins AG (1998) Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. Proc Natl Acad Sci U S A 95(26):15458–15463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Osigus HJ et al (2022) Studying placozoa WBR in the simplest metazoan animal, Trichoplax adhaerens. Methods Mol Biol 2450:121–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Varoqueaux F, Fasshauer D (2017) Getting nervous: an evolutionary overhaul for communication. Annu Rev Genet 51:455–476

    Article  CAS  PubMed  Google Scholar 

  70. Striedter GF et al (2014) NSF workshop report: discovering general principles of nervous system organization by comparing brain maps across species. J Comp Neurol 522(7):1445–1453

    Article  PubMed  Google Scholar 

  71. Nikitin MA et al (2023) Amino acids integrate behaviors in nerveless placozoans. Front Neurosci 17:1125624

    Article  PubMed  PubMed Central  Google Scholar 

  72. Moroz LL, Romanova DY (2022) Alternative neural systems: what is a neuron? (ctenophores, sponges and placozoans). Front Cell Dev Biol 10:1071961

    Article  PubMed  PubMed Central  Google Scholar 

  73. Miyazawa H et al (2021) Mitochondrial genome evolution of placozoans: gene rearrangements and repeat expansions. Genome Biol Evol 13(1)

    Google Scholar 

  74. Voigt O et al (2004) Placozoa – no longer a phylum of one. Curr Biol 14(22):R944–R945

    Article  CAS  PubMed  Google Scholar 

  75. Signorovitch AY, Dellaporta SL, Buss LW (2006) Caribbean placozoan phylogeography. Biol Bull 211(2):149–156

    Article  PubMed  Google Scholar 

  76. Ball EE, Miller DJ (2010) Putting placozoans on the (phylogeographic) map. Mol Ecol 19(11):2181–2183

    Article  PubMed  Google Scholar 

  77. Eitel M, Schierwater B (2010) The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and subtropical waters. Mol Ecol 19(11):2315–2327

    Article  CAS  PubMed  Google Scholar 

  78. Eitel M et al (2013) Global diversity of the Placozoa. PLoS One 8(4):e57131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kawashima T et al (2022) Observing phylum-level metazoan diversity by environmental DNA analysis at the Ushimado Area in the Seto Inland Sea. Zool Sci 39(1):157–165

    Article  Google Scholar 

  80. Eitel M et al (2018) Comparative genomics and the nature of placozoan species. PLoS Biol 16(7):e2005359

    Article  PubMed  PubMed Central  Google Scholar 

  81. Osigus HJ et al (2019) Polyplacotoma mediterranea is a new ramified placozoan species. Curr Biol 29(5):R148–R149

    Google Scholar 

  82. Tessler M et al (2022) Phylogenomics and the first higher taxonomy of Placozoa, an ancient and enigmatic animal phylum. Front Ecol Evol 10:10

    Article  Google Scholar 

  83. Kamm K et al (2018) Trichoplax genomes reveal profound admixture and suggest stable wild populations without bisexual reproduction. Sci Rep 8(1):11168

    Google Scholar 

  84. Dellaporta SL et al (2006) Mitochondrial genome of Trichoplax adhaerens supports placozoa as the basal lower metazoan phylum. Proc Natl Acad Sci U S A 103(23):8751–8756

    Google Scholar 

  85. Ueda T, Koya S, Maruyama YK (1999) Dynamic patterns in the locomotion and feeding behaviors by the placozoan Trichoplax adhaerens. Biosystems 54:65–70

    Google Scholar 

  86. Nakano H (2014) Survey of the Japanese coast reveals abundant placozoan populations in the Northern Pacific Ocean. Sci Rep 4:5356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Pearse VB, Voigt O (2007) Field biology of placozoans (Trichoplax): distribution, diversity, biotic interactions. Integr Comp Biol 47(5):677–692

    Google Scholar 

  88. Maruyama YK (2004) Occurrence in the field of a long-term, year-round, stable population of placozoans. Biol Bull 206(1):55–60

    Article  PubMed  Google Scholar 

  89. Cuervo-González R (2017) Rhodope placozophagus (Heterobranchia) a new species of turbellarian-like Gastropoda that preys on placozoans. Zool Anz 270:43–48

    Google Scholar 

  90. Riedl R (1959) Beiträge zur Kenntnis der Rhodope veranii, Teil I. Geschichte und Biologie. Zoologischer Anzeiger 163:107–122

    Google Scholar 

  91. Thiemann M, Ruthmann A (1991) Alternative modes of asexual reproduction in Trichoplax adhaerens (Placozoa). Zoomorphology 110(3):165–174

    Google Scholar 

  92. Thiemann M, Ruthmann A (1990) Zoomorphology spherical forms of Trichoplax adhaerens (Placozoa). Zoomorphology 110(1):37–45

    Google Scholar 

  93. Jackson AM, Buss LW (2009) Shiny spheres of placozoans (Trichoplax) function in anti-predator defense. Invertebr Biol 128(3):205–212

    Google Scholar 

  94. Fortunato A, Aktipis A (2019) Social feeding behavior of Trichoplax adhaerens. Front Ecol Evol 7:7

    Google Scholar 

  95. Smith CL, Pivovarova N, Reese TS (2015) Coordinated feeding behavior in Trichoplax, an animal without synapses. PLoS One 10(9):e0136098

    Google Scholar 

  96. Senatore A, Reese TS, Smith CL (2017) Neuropeptidergic integration of behavior in Trichoplax adhaerens, an animal without synapses. J Exp Biol 220(Pt 18):3381–3390

    Google Scholar 

  97. Armon S et al (2018) Ultrafast epithelial contractions provide insights into contraction speed limits and tissue integrity. Proc Natl Acad Sci U S A 115(44):E10333–E10341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mayorova TD et al (2018) Cells containing aragonite crystals mediate responses to gravity in Trichoplax adhaerens (Placozoa), an animal lacking neurons and synapses. PLoS One 13(1):e0190905

    Google Scholar 

  99. Smith CL et al (2019) Coherent directed movement toward food modeled in Trichoplax, a ciliated animal lacking a nervous system. Proc Natl Acad Sci U S A 116(18):8901–8908

    Google Scholar 

  100. Romanova DY et al (2020) Sodium action potentials in Placozoa: insights into behavioral integration and evolution of nerveless animals. Biochem Biophys Res Commun 532(1):120–126

    Google Scholar 

  101. Seravin LN (1989) Orientation of invertebrates in three-dimensional space: 4. Reaction of turning from the dorsal side to the ventral one. Zoologicheskij zhurnal (Zool J) 68:18–28. (in Russian)

    Google Scholar 

  102. Seravin LN, Gerasimova ZP (1998) Features of the fine structure of Trichoplax adhaerens, feeding on dense plant substrates. Cytologiya 30:1188–1193. (in Russian)

    Google Scholar 

  103. Romanova DY et al (2020) Glycine as a signaling molecule and chemoattractant in Trichoplax (Placozoa): insights into the early evolution of neurotransmitters. Neuroreport 31(6):490–497

    Google Scholar 

  104. Moroz LL et al (2021) Evolution of glutamatergic signaling and synapses. Neuropharmacology 199:108740

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Varoqueaux F et al (2018) High cell diversity and complex peptidergic signaling underlie Placozoan behavior. Curr Biol 28(21):3495–3501 e2

    Article  CAS  PubMed  Google Scholar 

  106. Moroz LL, Mukherjee K, Romanova DY (2023) Nitric oxide signaling in ctenophores. Front Neurosci 17:1125433

    Article  PubMed  PubMed Central  Google Scholar 

  107. Moroz LL et al (2020) The diversification and lineage-specific expansion of nitric oxide signaling in Placozoa: insights in the evolution of gaseous transmission. Sci Rep 10(1):13020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Davidescu MR et al (2023) Growth produces coordination trade-offs in Trichoplax adhaerens, an animal lacking a central nervous system. Proc Natl Acad Sci U S A 120(11):e2206163120

    Google Scholar 

  109. Guidi L et al (2011) Ultrastructural analyses support different morphological lineages in the phylum Placozoa Grell, 1971. J Morphol 272(3):371–378

    Article  PubMed  Google Scholar 

  110. DuBuc TQ, Ryan JF, Martindale MQ (2019) “Dorsal-ventral” genes are part of an ancient axial patterning system: evidence from Trichoplax adhaerens (Placozoa). Mol Biol Evol 36(5):966–973

    Google Scholar 

  111. Smith CL et al (2014) Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr Biol 24(14):1565–1572

    Google Scholar 

  112. Smith CL, Mayorova TD (2019) Insights into the evolution of digestive systems from studies of Trichoplax adhaerens. Cell Tissue Res 377(3):353–367

    Google Scholar 

  113. Moroz LL (2021) Multiple origins of neurons from secretory cells. Front Cell Dev Biol 9:669087

    Article  PubMed  PubMed Central  Google Scholar 

  114. Moroz LL, Romanova DY (2021) Selective advantages of synapses in evolution. Front Cell Dev Biol 9:726563

    Article  PubMed  PubMed Central  Google Scholar 

  115. Moroz LL et al (2020) Microchemical identification of enantiomers in early-branching animals: lineage-specific diversification in the usage of D-glutamate and D-aspartate. Biochem Biophys Res Commun 527(4):947–952

    Article  CAS  PubMed  Google Scholar 

  116. Thiemann M, Ruthmann A (1988) Trichoplax adhaerens Schulze, F. E. (Placozoa) – the formation of swarmers. Z Naturforsch C Biosci 43(11–12):955–957

    Google Scholar 

  117. Zuccolotto-Arellano J, Cuervo-Gonzalez R (2020) Binary fission in Trichoplax is orthogonal to the subsequent division plane. Mech Dev 162:103608

    Google Scholar 

  118. Charlesworth D (2006) Population genetics: using recombination to detect sexual reproduction: the contrasting cases of Placozoa and C. elegans. Heredity (Edinb) 96(5):341–342

    Google Scholar 

  119. Eitel M et al (2011) New insights into placozoan sexual reproduction and development. PLoS One 6(5):e19639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Signorovitch AY, Dellaporta SL, Buss LW (2005) Molecular signatures for sex in the Placozoa. Proc Natl Acad Sci U S A 102(43):15518–15522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Grell KG, Benwitz G (1974) Electronenmikroskopische Beobachutungen uber das Wachstum der Eizele und die Bildung der “Befruchtungsmembran” von Trichoplax adhaerens F.E. Schulze (Placozoa). Z Morphol Tiere 79:295–310

    Google Scholar 

  122. Grell KG (1972) Eibildung und Furchung von Trichoplax adhaerens F.E. Schulze (Placozoa). Z Morphol Tiere 73:297–314

    Google Scholar 

  123. Hoencamp C et al (2021) 3D genomics across the tree of life reveals condensin II as a determinant of architecture type. Science 372(6545):984–989

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Nikitin M (2015) Bioinformatic prediction of Trichoplax adhaerens regulatory peptides. Gen Comp Endocrinol 212:145–155

    Google Scholar 

  125. Kamm K, Schierwater B, DeSalle R (2019) Innate immunity in the simplest animals – placozoans. BMC Genomics 20(1):5

    Article  PubMed  PubMed Central  Google Scholar 

  126. Klinges JG et al (2019) Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rohweri, gen. nov., sp. nov. ISME J 13(12):2938–2953

    Article  PubMed  PubMed Central  Google Scholar 

  127. Smith CL et al (2021) Microscopy studies of placozoans. Methods Mol Biol 2219:99–118

    Article  CAS  PubMed  Google Scholar 

  128. Heyland A et al (2014) Trichoplax adhaerens, an enigmatic basal metazoan with potential. Methods Mol Biol 1128:45–61

    Google Scholar 

  129. Gauberg J, Senatore A, Heyland A (2021) Functional studies of Trichoplax adhaerens voltage-gated calcium channel activity. Methods Mol Biol 2219:277–288

    Google Scholar 

  130. Li Y et al (2021) Rooting the animal tree of life. Mol Biol Evol 38(10):4322–4333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Redmond AK, McLysaght A (2021) Evidence for sponges as sister to all other animals from partitioned phylogenomics with mixture models and recoding. Nat Commun 12(1):1783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Smith CL, Reese TS (2016) Adherens junctions modulate diffusion between epithelial cells in Trichoplax adhaerens. Biol Bull 231(3):216–224

    Google Scholar 

  133. Mayorova TD et al (2021) Placozoan fiber cells: mediators of innate immunity and participants in wound healing. Sci Rep 11(1):23343

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the Human Frontiers Science Program (RGP0060/2017) and National Science Foundation (IOS-1557923) grants to L.L.M. Research reported in this publication was also supported in part by the National Institute of Neurological Disorders and Stroke of the National Institutes of Health under award number R01NS114491 (to L.L.M). D.R. was supported by the Russian Science Foundation grant (23-14-00050). The content is solely the authors’ responsibility and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daria Y. Romanova or Leonid L. Moroz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Romanova, D.Y., Moroz, L.L. (2024). Brief History of Placozoa. In: Moroz, L.L. (eds) Ctenophores. Methods in Molecular Biology, vol 2757. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3642-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3642-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3641-1

  • Online ISBN: 978-1-0716-3642-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics