Skip to main content

Reproduction of Entomopathogenic Nematodes for Use in Pest Control

  • Protocol
  • First Online:
Plant-Nematode Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2756))

  • 107 Accesses

Abstract

The growing interest in the use of entomopathogenic nematodes and their symbiotic bacteria as promising biocontrol agents of many arthropod pests and pathogens has created running technologies to expand their use globally. The related laboratory procedures and tests on these nematodes such as their isolation, count, culture, identification, pathogenicity, virulence, and environmental tolerance should form the solid basis for such an expansion with reliable uses. Extensive practical details of such procedures and tests as well as how to identify and overcome the problems associated with these aspects are addressed in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abd-Elgawad MMM, Askary TH, Coupland J (eds) (2017) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB International, Wallingford

    Google Scholar 

  2. Abd-Elgawad MMM (2021) Photorhabdus spp.: an overview of the beneficial aspects of mutualistic bacteria of insecticidal nematodes. Plan Theory 10:1660. https://doi.org/10.3390/plants10081660

    Article  CAS  Google Scholar 

  3. Abd-Elgawad MMM (2022) Xenorhabdus spp.: an overview of the useful facets of mutualistic bacteria of entomopathogenic nematodes. Life 12:1360. https://doi.org/10.3390/life12091360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Ann Rev Entomol 38:181–206

    Article  Google Scholar 

  5. Lacey LA, Georgis R (2012) Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. J Nematol 44:218–225

    PubMed  PubMed Central  Google Scholar 

  6. Koppenhöfer AM, Shapiro-Ilan DI, Hiltpold I (2020) Entomopathogenic nematodes in sustainable food production. Front Sustain Food Syst 4:125. https://doi.org/10.3389/fsufs.2020.00125

    Article  Google Scholar 

  7. Hussaini SS (2017) Entomopathogenic nematodes: Ecology, diversity and geographical distribution. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. CAB International, Wallingford, pp 88–142

    Chapter  Google Scholar 

  8. White GF (1929) A method for obtaining infective nematode larvae from cultures. Science 66:302–303

    Article  Google Scholar 

  9. Nguyen KB, Hunt DJ (eds) (2016) Advances in Entomopathogenic Nematode Taxonomy and Phylogeny. Nematology monographs and perspectives, 12. Brill, Leiden, p 438

    Google Scholar 

  10. Spiridonov SE (2017) Entomopathogenic nematodes of the families Steinernematidae and Heterorhabditidae: Morphology and taxonomy. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. CAB International, Wallingford, pp 45–62

    Chapter  Google Scholar 

  11. Sivaramakrishnan S, Razia M (2021) Entomopathogenic nematodes and their symbiotic bacteria, springer protocols handbooks. Springer Science+Business Media, LLC, Berlin. https://doi.org/10.1007/978-1-0716-1445-7_2

    Book  Google Scholar 

  12. Wheeler WC, Gladstein DS (1994) MALIGN: a multiple sequence alignment program. J Hered 85:417–418

    Article  Google Scholar 

  13. Felsenstein J (1993) Phylogeny inference package. Department of Genetics, University of Washington, Seattle

    Google Scholar 

  14. Wouts WM (1981) Mass production of the entomogenous nematode Heterorhabditis heliothidis (Nematode: Heterorhabditidae) on artificial media. J Nematol 13:467–469

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dye DW (1968) A taxonomic study of the genus Erwinia I. The ‘amylovora’ group. N Z J Sci 11:590–607

    Google Scholar 

  16. Abd-Elgawad MMM (2020) Can rational sampling maximise isolation and fix distribution measure of entomopathogenic nematodes? Nematology 22(8):907–916. https://doi.org/10.1163/1568541100003350

    Article  Google Scholar 

  17. Abd-Elgawad MMM (2021) Optimizing sampling and extraction methods for plant-parasitic and entomopathogenic nematodes. Plan Theory 10(4):629. https://doi.org/10.3390/plants10040629

    Article  Google Scholar 

  18. Abd-Elgawad MMM (2017) Status of entomopathogenic nematodes in integrated pest management strategies in Egypt. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol Agents: Entomopathogenic and Slug Parasitic Nematodes. CAB International, Wallingford, pp 473–501

    Chapter  Google Scholar 

  19. Wiesel L, Daniell TJ, King D, Neilson R (2015) Determination of the optimal soil sample size to accurately characterize nematode communities in soil. Soil Biol Biochem 80:89–91. https://doi.org/10.1016/j.soilbio.2014.09.026

    Article  CAS  Google Scholar 

  20. Woodring JL, Kaya HK (eds) (1988) Steinernematid and heterorhabditid nematodes: a handbook of techniques. Southern Cooperative Series Bulletin No. 331, Arkansas Agricultural Experiment Station, Fayetteville, Arkansas

    Google Scholar 

  21. Campos-Herrera R, Johnson EG, El-Borai FE, Stuart RJ, Graham JH, Duncan LW (2011) Long-term stability of entomopathogenic nematode spatial patterns measured by sentinel insects and real-time PCR assays. Ann Appl Biol 158:55–68

    Article  CAS  Google Scholar 

  22. Dritsoulas A, El-Borai FE, Shehata IE, Hammam MM, El-Ashry RM, Mohamed MM, Abd-Elgawad MM, Duncan LW (2021) Reclaimed desert habitats favor entomopathogenic nematode and microarthropod abundance compared to ancient farmlands in the Nile Basin. J Nematol 53:1–13. https://doi.org/10.21307/jofnem-2021-047

    Article  CAS  Google Scholar 

  23. Curran J, Gilbert C, Butler K (1992) Routine cryopreservation of Steinernema and Heterorhabditis species. J Nematol 24:38–45

    Google Scholar 

  24. Grewal P (2002) Formulation and application technology. In: Gaugler R (ed) Entomopathogenic nematology. CAB International, Wallingford, pp 265–288

    Chapter  Google Scholar 

  25. Kaya HK, Nelsen CE (1985) Encapsulation of steinernematid and heterorhabditid nematodes with calcium alginate: A new approach for insect control and other applications. Environ Entomol 14:572–574. https://doi.org/10.1093/ee/14.5.572

    Article  Google Scholar 

  26. Kim J, Jaffuel G, Turlings TJ (2015) Enhanced alginate capsule properties as a formulation of entomopathogenic nematodes. BioControl 60:1–9. https://doi.org/10.1007/s10526-014-9638-z

    Article  CAS  Google Scholar 

  27. Eisenback JD (1986) A comparison of techniques useful for preparing nematodes for scanning electron microscopy. J Nematol 18:479–487

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Yushin VV et al (2021) Electron microscopy techniques. CABI Books. CABI International. https://doi.org/10.1079/9781786391759.0008

    Book  Google Scholar 

  29. De Luca F, Abd-Elgawad MMM (2017) Molecular systematics and phylogenetic reconstruction of Steinernema and Heterorhabditis. In: Abd-Elgawad MMM, Askary TH, Coupland J (eds) Biocontrol agents: entomopathogenic and slug parasitic nematodes. CAB International, Wallingford, pp 143–153

    Chapter  Google Scholar 

  30. Joyce CM, Steitz TA (1994) Function and structure relationships in DNA polymerases. Annu Rev Biochem 63:777–822

    Article  CAS  PubMed  Google Scholar 

  31. Yamamoto S, Harayama S (1995) PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Castaneda-Alvarez C, Prodan S, Zamorano A, San-Blas E, Aballay E (2021) Xenorhabdus lircayensis sp. nov., the symbiotic bacterium associated with the entomopathogenic nematode Steinernema unicornum. Int J Syst Evol Microbiol 71:005151. https://doi.org/10.1099/ijsem.0.005151

    Article  CAS  Google Scholar 

  33. Tamura K (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  CAS  PubMed  Google Scholar 

  34. Brodsky LI (1992) GeneBee: the program package for biopolymer structure analysis. Dimacs 8:127–139

    Google Scholar 

  35. Brodsky LI (1995) GeneBee-NET: an internet-based server for analyzing biopolymers structure. Biochemist 60:1221–1123

    CAS  Google Scholar 

  36. Kaya HK, Stock SP (1997) Techniques in insect nematology. In: Lacey LA (ed) Manual of techniques in insect pathology. Biological Techniques Series, Academic Press, San Diego, pp 281–324

    Chapter  Google Scholar 

  37. Abbott WS (1925) A method of computing the effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  38. Gaugler R, Brown I, Shapiro-Ilan D, Atwa A (2002) Automated technology for in vivo mass production of entomopathogenic nematodes. Biol Control 24:199–206

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the US–Egypt Project cycle 17 (no. 172), and the NRC help offered via “In-house project” headed by Mahfouz Abd-Elgawad in research plan No. 13 Project No. 13050112.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Abd-Elgawad, M.M.M. (2024). Reproduction of Entomopathogenic Nematodes for Use in Pest Control. In: Molinari, S. (eds) Plant-Nematode Interactions. Methods in Molecular Biology, vol 2756. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3638-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3638-1_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3637-4

  • Online ISBN: 978-1-0716-3638-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics